×

On the action of the Iwahori-Hecke algebra on modular invariants. (English) Zbl 1457.20006

Let \(p\) be an odd prime, and let \(V_n\) denote an \(n\)-dimensional vector space over the prime field \(\mathbb{F}_p\). The general linear group \(G_n=\mbox{Aut}(V_n)\) acts naturally on \(V_n\) and therefore on \(H^\ast(BV_n,\mathbb{F}_p)\). Let \(B_n\) and \(U_n\) denote the Borel subgroup of \(G_n\) and write \(1^{G_n}_{B_n}\) for the representation of \(G_n\) induced by the trivial left representation of \(B_n\). The \(\mathbb{F}_p\)-algebra \(\mathcal{H}_n=\mbox{End}_{\mathbb{F}_p[G_n]}(1^{G_n}_{B_n})\) is called the \((\bmod\,p)\)-Iwahori-Hecke algebra [N. Iwahori, J. Fac. Sci., Univ. Tokyo, Sect. I 10, 215–236 (1964; Zbl 0135.07101)]. For any left \(G_n\)-module \(M\), the invariant subspace \(M^{B_n}\) is equipped with a natural (right) action of \(\mathcal{H}_n\).
The authors compute explicitly this action for the \(G_n\)-module \(H^\ast(BV_n,\mathbb{F}_p)\) at an odd prime. Applications include a direct proof of the structure of the universal Steenrod algebra and a new proof of a key result on the structure of Takayasu modules [S.-i. Takayasu, J. Math. Kyoto Univ. 39, No. 2, 377–398 (1999; Zbl 1002.55006)].

MSC:

20C08 Hecke algebras and their representations
20C20 Modular representations and characters
55S10 Steenrod algebra
Full Text: DOI

References:

[1] Arone, G.; Mahowald, M., The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres, Invent. Math, 135, 3, 743-788 (1999) · Zbl 0997.55016
[2] Behrens, M., The Goodwillie tower and the EHP sequence, Memoirs AMS, 218, 1026, 90 (2012) · Zbl 1330.55012
[3] Bruner, R. R.; May, J. P.; Mcclure, J. E.; Steinberger, M., Ring Spectra and Their Applications, Lecture Notes in Mathematics, 1176 (1986), Berlin: Springer, Berlin · Zbl 0585.55016
[4] Ciampella, A.; Lomonaco, L. A., The universal Steenrod algebra at odd primes, Commun. Algebra, 32, 7, 2589-2607 (2004) · Zbl 1061.55014
[5] Dickson, L. E., A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Am. Math. Soc, 12, 1, 75-98 (1911) · JFM 42.0136.01
[6] Hai, N. D. H., Un complexe de Koszul de modules instables et cohomotopie d’un spectre de Thom, Bul. Soc. Math. France, 140, 2, 257-308 (2012) · Zbl 1259.55007
[7] Hai, N. D. H., Generators for the mod 2 cohomology of the Steinberg summand of Thom spectra over, J. Algebra, 381, 164-175 (2013) · Zbl 1279.55010
[8] Hai, N. D. H. (2010). Notes on universal Steenrod algebra (Preprint).
[9] Hai, N. D. H.; Schwartz, L., Takayasu cofibrations revisited, Proc. Japan Acad. Ser. A Math. Sci, 91, 8, 123-127 (2015) · Zbl 1347.55015
[10] Hai, N. D. H.; Schwartz, L., Realizing a complex of unstable modules, Proc. Japan Acad. Ser. A Math. Sci, 87, 5, 83-87 (2011) · Zbl 1234.55012
[11] Hai, N. D. H.; Schwartz, L.; Nam, T. N., La fonction génératrice de Minc et une “conjecture de Segal” pour certains spectres de Thom, Adv. Math, 225, 3, 1431-1460 (2010) · Zbl 1200.55026
[12] Iwahori, N., On the structure of a Hecke ring of Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo Sect. IA Math, 10, 215-236 (1964) · Zbl 0135.07101
[13] Kuhn, N. J., The modular Hecke algebra and Steinberg representation of finite Chevalley groups, J. Algebra, 91, 1, 125-141 (1984) · Zbl 0563.20015
[14] Kuhn, N. J.; Priddy, S. B., The transfer and Whitehead’s conjecture, Math. Proc. Camb. Phil. Soc, 98, 3, 459-480 (1985) · Zbl 0584.55007
[15] Li, H. H.; Singer, W. M., Resolutions of modules over the Steenrod algebra and the classical theory of invariants, Math. Z, 181, 2, 269-286 (1982) · Zbl 0504.55017
[16] Mandell, M. A., \(####\) algebra and p-adic homotopy theory, Topology, 40, 1, 43-94 (2001) · Zbl 0974.55004
[17] May, J. P. (1970). A general algebraic approach to Steenrod operations. In The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970), Lecture Notes in Mathematics, Vol. 168. Springer, Berlin. pp. 153-231. · Zbl 0242.55023
[18] Minh, P. A.; Tùng, V. T., Modular invariants of parabolic subgroups of general linear groups, J. Algebra, 232, 1, 197-208 (2000) · Zbl 0978.20020
[19] Mitchell, S. A.; Priddy, S. B., Stable splittings derived from the Steinberg module, Topology, 22, 3, 285-298 (1983) · Zbl 0526.55010
[20] Mùi, H., Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math, 22, 3, 319-369 (1975) · Zbl 0335.18010
[21] Pengelley, D. J., William, F. (2007). The odd primary Kudo-Araki-May algebra of algebraic Steenrod operations and invariant theory. In Proceedings of the School and Conference in Algebraic Topology, Geom. Topol. Monogr., 11, Geom. Topol. Publ., Coventry, pp. 217-243. · Zbl 1162.55013
[22] Powell, G. On quadratic coalgebras, duality and the universal Steenrod algebra. arXiv. 1101.0227.
[23] Steinberg, R., Prime power representations of finite linear groups, Canad. J. Math, 9, 347-351 (1957) · Zbl 0079.25601
[24] Takayasu, S., On stable summands of Thom spectra of \(####\) associated to Steinberg modules, J. Math. Kyoto Univ, 39, 2, 377-398 (1999) · Zbl 1002.55006
[25] Wan, J.; Wang, W., Twisted Dickson-Mui invariants and the Steinberg module multiplicity, Math. Proc. Camb. Phil. Soc, 151, 1, 43-57 (2011) · Zbl 1238.13014
[26] Wan, J.; Wang, W., The \(####\)-module structure of the symmetric algebra around the Steinberg module, Adv. Math, 227, 4, 1562-1584 (2011) · Zbl 1234.20017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.