×

Influence of the initial shape of a bubble on bubble rise dynamics in a stagnant viscous fluid. (English. Russian original) Zbl 1534.76091

Fluid Dyn. 58, No. 3, 387-396 (2023); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2023, No. 3, 83-93 (2023).

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76D05 Navier-Stokes equations for incompressible viscous fluids
76M99 Basic methods in fluid mechanics
Full Text: DOI

References:

[1] Arkhipov, V. A.; Vasenin, I. M.; Tkachenko, A. S.; Usanina, A. S., Unsteady rise of a bubble in a viscous fluid at small Reynolds numbers, Fluid Dyn, 50, 86-94 (2015) · Zbl 1325.76185 · doi:10.1134/S0015462815010093
[2] Hua, J., CFD simulations of the effects of small dispersed bubbles on the rising of a single large bubble in 2D vertical channels, Chem. Eng. Sci., 2015, no. 123, pp. 99-115.
[3] Kozelkov, A. S.; Kurkin, A. A.; Kurulin, V. V.; Lashkin, S. V.; Tarasova, N. V.; Tyatyushkina, E. S., Numerical modeling of the free rise of an air bubble, Fluid Dyn., 51, 709-721 (2016) · Zbl 1357.76092 · doi:10.1134/S0015462816060016
[4] Labuntsov, D.A. and Yagov, V.V. Mekhanika dvukhphaznykh sistem (Mechanics of Two-Phase Systems), Moscow: Izd-vo MEI, 2000.
[5] Clift, R.; Grase, J. R.; Weber, M. E., Bubbles, Drops and Particles (1978)
[6] Arkhipov, V. A.; Vasenin, I. M.; Usanina, A. S., Analysis of the mechanism of loss of stability of a single bubble at low Reynolds numbers, Zh. Prikl. Mekh. Tekh. Fiz, 52, 51-59 (2011) · Zbl 1272.76128
[7] Zahedi, P.; Saleh, R.; Moreno-Atanasio, R.; Yousefi, K., Influence of fluid properties on bubble formation, detachment, rising and collapse. Investigation using volume of fluid method, Korean J. Chem. Eng, 31, 1349-1361 (2014) · doi:10.1007/s11814-014-0063-x
[8] Siriano, S.; Balcázar, N.; Tassone, A.; Rigola, J.; Caruso, G., Numerical simulation of high-density ratio bubble motion with interIsoFoam, Fluids, 7, 1-22 (2022) · doi:10.3390/fluids7050152
[9] Pribaturin, N.A. and Meledin, V.G., Multi-information methods for experimental studying of two-phase bubble flosws, Eurasian Phys. Tech. J., 2013, vol. 10, no. 2(20), pp. 288-292.
[10] Cano-Lozano, J. C.; Martinez-Bazan, C., Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability, Physical Review Fluids, 1, 1-30 (2016) · doi:10.1103/PhysRevFluids.1.053604
[11] Vries, A.W.G., Biesheuvel, A., and Wijngaarden, L., Notes on the path and wake of a gas bubble rising in pure water, Int. J. Multiph. Flow, 2002, no. 28, pp. 1823-1835. · Zbl 1137.76561
[12] Davies, R.M. and Taylor, G.I., The mechanics of large bubbles rising through liquids in tubes, Proc. of Roy. Soc. London, 1950, vol. 200, Ser. A, pp. 375-390.
[13] Kozelkov, A. S.; Efremov, V. R.; Dmitriev, S. M.; Kurkin, A. A.; Pelinovskii, E. N.; Tarasova, N. V.; Strelets, D. Yu., Investigation of the features of rising air bubbles and rigid spheres, Fund. Prikl. Gidrofiz, 11, 73-80 (2018)
[14] Baz-Rodríguez, S.; Aguilar-Corona, A.; Soria, A., Rising velocity for single bubbles in pure liquids, Rev. Mex. Ing. Quim, 11, 269-278 (2012)
[15] Heydari, N., Larachi, F., Taghavi, S.M., and Bertrand, F., Three-dimensional analysis of the rising dynamics of individual ellipsoidal bubbles in an inclined column, Chem. Eng. Sci., 2022, vol. 258, p. 117759.
[16] Arkhipov, V. A.; Vasenin, I. M.; Usanina, A. S., Dynamics of bubble rising in the presence of surfactants, Fluid Dyn, 51, 266-274 (2016) · Zbl 1342.76002 · doi:10.1134/S0015462816020137
[17] Arkhipov, V. A.; Usanina, A. S.; Basalaev, S. A.; Kalichkina, L. E.; Mal’kov, V. S., Dynamics of bubble cluster rising in the presence of a surfactant, Fluid Dyn, 55, 103-110. (2020) · doi:10.1134/S0015462820010024
[18] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys., 39, 201-225 (1981) · Zbl 0462.76020 · doi:10.1016/0021-9991(81)90145-5
[19] Martin, J. C.; Moyce, W. J., An experimental study of the collapse of liquid columns on a rigid horizontal plane, Phil. Trans. Roy. Soc. London, 244, 312-324 (1952) · doi:10.1098/rsta.1952.0006
[20] Morenko, I.V., Numerical investigation of the collapse of a liquid column in vessels of various shapes, Vest. Tomsk. Gos. Univ.,Matem. Mekh., 2019, no. 60, pp. 119-131.
[21] Morenko, I. V., Numerical simulation of the propagation of pressure waves in water during the collapse of a spherical air cavity, Ocean Eng, 215, 1-9 (2020) · doi:10.1016/j.oceaneng.2020.107905
[22] Morenko, I. V., Numerical simulation of the implosive process in a cylindrical vessel, TVT, 57, 755-763 (2019)
[23] Klostermann, J.; Schaake, K.; Schwarze, R., Numerical simulation of a single rising bubble by VOF with surface compression, Int. J. Numer. Meth. Fluids, 71, 960-982 (2013) · Zbl 1430.76119 · doi:10.1002/fld.3692
[24] Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., and Tobiska, L., Quantitative benchmark computations of two-dimensional bubble dynamics, Int. J. Numer. Meth. Fluids, 2009, no. 60, pp. 1259-1288. · Zbl 1273.76276
[25] Štrubelj, L., Tiselj, I., and Mavko, B., Simulations of free surface flows with implementation of surface tension and interface sharpening in the two-fluid model, Int. J. Heat Fluid Flow, 2009, no. 30, pp. 741-750.
[26] Zhang, Y.; Liang, B.; Ni, J., Numerical study of bubble rising motion in a vertical wedge-shaped channel based on a modified level set method, Fluid Dyn, 55, 241-251 (2020) · Zbl 1475.76107 · doi:10.1134/S0015462820010152
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.