×

Image retinex based on the nonconvex TV-type regularization. (English) Zbl 1480.92024

Summary: Retinex theory is introduced to show how the human visual system perceives the color and the illumination effect such as retinex illusions, medical image intensity inhomogeneity and color shadow effect etc. Many researchers have studied this ill-posed problem based on the framework of the variation energy functional for decades. However, to the best of our knowledge, the existing models via the sparsity of the image based on the nonconvex \(\ell^p\)-quasinorm were limited. To deal with this problem, this paper considers a \(\mathrm{TV}_p\)-\(\mathrm{HOTV}_q\)-based retinex model with \(p,q\in (0,1)\). Specially, the \(\mathrm{TV}_p\) term based on the total variation(TV) regularization can describe the reflectance efficiently, which has the piecewise constant structure. The \(\mathrm{HOTV}_q\) term based on the high order total variation (HOTV) regularization can penalize the smooth structure called the illumination. Since the proposed model is non-convex, non-smooth and non-Lipschitz, we employ the iteratively reweighed \(\ell_1\) (IRL1) algorithm to solve it. We also discuss some properties of our proposed model and algorithm. Experimental experiments on the simulated and real images illustrate the effectiveness and the robustness of our proposed model both visually and quantitatively by compared with some related state-of-the-art variational models.

MSC:

92C05 Biophysics
Full Text: DOI

References:

[1] R. Amestoy; E. Provenzi; M. Bertalmío; V. Caselles, A perceptually inspired variational framework for color enhancement, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 458-474 (2009)
[2] M. Benning; F. Knoll; C. Schonlieb; T. Valkonen, Preconditioned ADMM with nonlinear operator constraint, IFIP Conference on System Modeling and Optimization, 494, 117-126 (2015) · doi:10.1007/978-3-319-55795-3_10
[3] M. Bertalmío; V. Caselles; E. Provenzi; A. Rizzi, Perceptual color correction through variational techniques, IEEE Transactions on Image Processing, 16, 1058-1072 (2007) · doi:10.1109/TIP.2007.891777
[4] M. Bertalmío; V. Caselles; E. Provenzi, Issues about retinex theory and contrast enhancement, International Journal of Computer Vision, 83, 101-119 (2009) · Zbl 1477.68329
[5] A. Blake, Boundary conditions for lightness computation in Mondrian world, Computer Vision Graphics Image Processing, 32, 314-327 (1985) · doi:10.1016/0734-189X(85)90054-4
[6] S. Boyd; N. Parikh; E. Chu; B. Peleato; J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3, 1-122 (2011) · Zbl 1229.90122 · doi:10.1561/9781601984616
[7] E. Candes; M. Wakin; S. Boyd, Enhancing sparsity by reweighted \(l_1\) minimization, Journal of Fourier Analysis and Applications, 14, 877-905 (2008) · Zbl 1176.94014 · doi:10.1007/s00041-008-9045-x
[8] T. Cooper; F. Baqai, Analysis and extensions of the frankle-mccann retinex algorithm, Journal of Electronic Imaging, 13, 85-93 (2004) · doi:10.1117/1.1636182
[9] X. Chen; F. Xu; Y. Ye, Lower bound theory of nonzero entries in solutions of \(\ell^2-\ell^p\) minimization, SIAM Journal on Scientific Computing, 32, 2832-2852 (2010) · Zbl 1242.90174 · doi:10.1137/090761471
[10] X. Chen; W. Zhou, Convergence of the reweighted \(\ell_1\) minimization algorithm for \(\ell_2-\ell^p\) minimization, Journal Computational Optimization and Application, 59, 47-61 (2014) · Zbl 1326.90062 · doi:10.1007/s10589-013-9553-8
[11] J. Douglas; H. Rachford, On the numerical solution of heat conduction problems in two and three space variables, Transactions of the American Mathematical Society, 82, 421-439 (1956) · Zbl 0070.35401 · doi:10.1090/S0002-9947-1956-0084194-4
[12] Y. Duan; H. Chang; W. Huang; J. Zhou; Z. Lu; C. Wu, The \(L_0\) regularized Mumford-Shah model for bias correction and segmentation of medical images, IEEE Transactions on Image Processing, 24, 3927-3938 (2015) · Zbl 1408.94147 · doi:10.1109/TIP.2015.2451957
[13] D. Gabay; B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximations, Computers and Mathematics with Applications, 2, 17-40 (1976) · Zbl 0352.65034 · doi:10.1016/0898-1221(76)90003-1
[14] N. Galatsanos; A. Katsaggelos, Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation, IEEE Transactions on Image Processing, 1, 322-336 (1992) · doi:10.1109/83.148606
[15] D. Ghilli; K. Kunisch, On monotone and primal-dual active set schemes for \(\ell^p\)-type problems, \(p\in(0, 1]\), Computational Optimizationand Applications, 72, 45-85 (2019) · Zbl 1417.90120 · doi:10.1007/s10589-018-0036-9
[16] R. Glowinski; S. Luo; X. Tai, Fast operator-splitting algorithms for variational imaging models: Some recent developments, Handbook of Numerical Analysis, 20, 191-232 (2019) · Zbl 1446.94007
[17] R. Glowinski, S. Osher and W. Yin, Splitting Methods in Communication, Imaging, Science, and Engineering, Springer, Cham, 2016. · Zbl 1362.65002
[18] Z. Gu; F. Li; X. Lv, A detail preserving variational model for image Retinex, Applied Mathematical Modelling, 68, 643-661 (2019) · Zbl 1481.94017 · doi:10.1016/j.apm.2018.11.052
[19] P. Hansen; D. Leary, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM Journal on Scientific Computing, 14, 1487-1503 (1993) · Zbl 0789.65030 · doi:10.1137/0914086
[20] B. Horn, Determining lightness from an image, Computer Graphics Image Processing, 3, 277-299 (1974) · doi:10.1016/0146-664X(74)90022-7
[21] B. Horn, Understanding image intensities, Artificial Intelligence, 8, 201-231 (1977) · Zbl 0359.68118 · doi:10.1016/0004-3702(77)90020-0
[22] D. Jobson; Z. Rahman; G. Woodell, Properties and performance of a center/surround retinex, IEEE Transactions on Image Processing, 6, 451-462 (1997) · doi:10.1109/83.557356
[23] D. Jobson; Z. Rahman; G. Woodell, A multiscale Retinex for bridging the gap between color image and the human observation of scenes, IEEE Transactions on Image Processing, 6, 965-976 (2002) · doi:10.1109/83.597272
[24] Y. Jung; T. Jeong; S. Yun, Non-convex TV denoising corrupted by impulse noise, Inverse Problems and Imaging, 11, 689-702 (2017) · Zbl 1420.94013 · doi:10.3934/ipi.2017032
[25] R. Kimmel; M. Elad; D. Shaked; R. Keshet; I. Sobel, A variational framework for retinex, International Journal of Computer Vision, 52, 7-23 (2003) · Zbl 1009.68642
[26] M. Lai; Y. Xu; W. Yin, Improved iteratively reweighted least squares for unconstrained smoothed \(\ell_q\) minimization, SIAM Journal on Numerical Analysis, 51, 927-957 (2013) · Zbl 1268.49038 · doi:10.1137/110840364
[27] E. Land; J. Mccann, Lightness and Retinex theory, Journal of the Optical Society of America, 61, 1-11 (1971)
[28] E. Land, The Retinex theory of color vision, Scientific American, 237, 108-128 (1977)
[29] E. Land, An alternative technique for the computation of the designator in the retinex theory of color vision, Proceedings of the National Academy of Sciences, 83, 3078-3080 (1986)
[30] M. Langer; S. Zucker, Spatially varying illumination: A computational model of converging and diverging sources, European Conference on Computer Vision, 801, 226-232 (1994) · doi:10.1007/BFb0028356
[31] A. Lanza1; S. Morigi1; F. Sgallari, Constrained \(TV_p-\ell_2\) model for image restoration, Journal of Scientific Computing, 68, 64-91 (2016) · Zbl 1344.65025 · doi:10.1007/s10915-015-0129-x
[32] L. Liu; Z. Pang; Y. Duan, Retinex based on exponent-type total variation scheme, Inverse Problems and Imaging, 12, 1199-1217 (2018) · Zbl 1406.80010 · doi:10.3934/ipi.2018050
[33] Z. Liu; C. Wu; Y. Zhao, A new globally convergent algorithm for non-Lipschitz \(\ell^p-\ell^q\) minimization, Advances in Computational Mathematics, 45, 1369-1399 (2019) · Zbl 1415.49022 · doi:10.1007/s10444-019-09668-y
[34] J. Liang; X. Zhang, Retinex by higher order total variation \({L}^1\) decomposition, Journal of Mathematical Imaging and Vision, 52, 345-355 (2015) · Zbl 1400.94025 · doi:10.1007/s10851-015-0568-x
[35] Z. Lu, Iterative reweighted minimization methods for \(\ell^p\) regularized unconstrained nonlinear programming, Mathematical Programming: Series A and B, 147, 277-307 (2014) · Zbl 1308.90170 · doi:10.1007/s10107-013-0722-4
[36] D. Marini; A. Rizzi, A computational approach to color adaptation effects, Image and Vision Computing, 18, 1005-1014 (2000)
[37] W. Ma; S. Osher, A TV bregman iterative model of retinex theory, Inverse Problems and Imaging, 6, 697-708 (2012) · Zbl 1261.68153 · doi:10.3934/ipi.2012.6.697
[38] J. Mccann, Lessons learned from mondrians applied to real images and color gamuts, Proceedings of the IST/SID 7th Color Imaging Conference, 1999, 1-8.
[39] J. Morel, A. Petro and C. Sbert, Fast implementation of color constancy algorithms, Proceedings of SPIE, 7241, 2009.
[40] J. Morel; A. Petro; C. Sbert, A PDE formalization of retinex theory, IEEE Transactions on Image Processing, 19, 2825-2837 (2010) · Zbl 1371.94268 · doi:10.1109/TIP.2010.2049239
[41] V. Morozov, Methods for Solving Incorrectly Posed Problems, Springer-Verlag, New York, 1984. · Zbl 0549.65031
[42] M. Ng; W. Wang, A total variation model for retinex, SIAM Journal on Imaging Sciences, 4, 345-365 (2011) · Zbl 1215.65117 · doi:10.1137/100806588
[43] P. Ochs; A. Dosovitskiy; T. Brox; T. Pock, On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision, SIAM Journal on Imaging Sciences, 8, 331-372 (2015) · Zbl 1326.65078 · doi:10.1137/140971518
[44] J. Oliveira; J. Dias; M. Figueiredo, Adaptive total variation image deblurring: A majorizationCminimization approach, Signal Processing, 89, 1683-1693 (2009) · Zbl 1178.94029
[45] H. Pan; Y. Wen; H. Zhu, A regularization parameter selection model for total variation based image noise removal, Applied Mathematical Modelling, 68, 353-367 (2019) · Zbl 1481.65274 · doi:10.1016/j.apm.2018.11.032
[46] E. Provenzi; D. Marini; L. De Carli; A. Rizzi, Mathematical definition and analysis of the retinex algorithm, Journal of the Optical Society of America A, 22, 2613-2621 (2005) · doi:10.1364/JOSAA.22.002613
[47] S. Sabacha; M. Teboulle, Lagrangian methods for composite optimization, Handbook of Numerical Analysis, 20, 401-436 (2019) · Zbl 1446.90126
[48] A. Theljani and K. Chen, A Nash game based variational model for joint image intensity correction and registration to deal with varying illumination, Inverse Problems, 36 (2020), 034002. · Zbl 1452.94009
[49] Y. Wen; R. Chan, Using generalized cross validation to select regularization parameter for total variation regularization problems, Inverse Problems and Imaging, 12, 1103-1120 (2018) · Zbl 1405.94021 · doi:10.3934/ipi.2018046
[50] W. Wang; C. He, A variational model with barrier functionals for Retinex, SIAM Journal on Imaging Sciences, 8, 1955-1980 (2015) · Zbl 1330.94012 · doi:10.1137/15M1006908
[51] J. Zhang; R. Chen; C. Deng; S. Wang, Fast linearized augmented method for Euler’s elastica model, Numerical Mathematics:Theory, Methods and Applications, 10, 98-115 (2017) · Zbl 1389.94035 · doi:10.4208/nmtma.2017.m1611
[52] X. Zhang; Y. Shi; Z. Pang; Y. Zhu, Fast algorithm for image denoising with different boundary conditions, Journal of the Franklin Institute, 354, 4595-4614 (2017) · Zbl 1380.94041 · doi:10.1016/j.jfranklin.2017.04.011
[53] D. Zosso, G. Tran and S. Osher, A unifying retinex model based on non-local differential operators, Computational Imaging XI, 865702, 2013.. · Zbl 1328.68286
[54] W. Zuo, D. Meng, L. Zhang, X. Feng and D. Zhang, A generalized iterated shrinkage algorithm for non-convex sparse coding, IEEE International Conference on Computer Vision, 2013,217-224.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.