×

On and beyond total variation regularization in imaging: the role of space variance. (English) Zbl 07725064

Summary: Over the last 30 years a plethora of variational regularization models for image reconstruction have been proposed and thoroughly inspected by the applied mathematics community. Among them, the pioneering prototype often taught and learned in basic courses in mathematical image processing is the celebrated Rudin-Osher-Fatemi (ROF) model [L. I. Rudin, S. Osher, and E. Fatemi, Phys. D, 60 (1992), pp. 259-268], which relies on the minimization of the edge-preserving total variation (TV) seminorm as a regularization term. Despite its (often limiting) simplicity, this model is still very much employed in many applications and used as a benchmark for assessing the performance of modern learning-based image reconstruction approaches, thanks to its thorough analytical and numerical understanding. Among the many extensions to TV proposed over the years, a large class is based on the concept of space variance. Space-variant models can indeed overcome the intrinsic inability of TV to describe local features (strength, sharpness, directionality) by means of an adaptive mathematical modeling which accommodates local regularization weighting, variable smoothness, and anisotropy. Those ideas can further be cast in the flexible Bayesian framework of generalized Gaussian distributions and combined with maximum likelihood and hierarchical optimization approaches for efficient hyperparameter estimation. In this work, we review and connect the major contributions in the field of space-variant TV-type image reconstruction models, focusing, in particular, on their Bayesian interpretation which paves the way to new exciting and unexplored research directions.

MSC:

68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65K10 Numerical optimization and variational techniques

References:

[1] S. Alliney, A property of the minimum vectors of a regularizing functional defined by means of the absolute norm, IEEE Trans. Signal Process., 45 (1997), pp. 913-917, https://doi.org/10.1109/78.564179.
[2] F. Andreu, C. Ballester, V. Caselles, and J. M. Mazon, Minimizing total variation flow, Differential Integral Equations, 14 (2001), pp. 321-360. · Zbl 1020.35037
[3] L. Antonelli, V. De Simone, and D. di Serafino, Spatially adaptive regularization in image segmentation, Algorithms, 13 (2020), art. 226, https://doi.org/10.3390/a13090226.
[4] S. Arridge, V. Kolehmainen, and M. J. Schweiger, Reconstruction and regularisation in optical tomography, in Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Y. A. Censor, M. Jiang, and Louis, eds., Scuola Normale Superiore, 2008, pp. 1-18.
[5] S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb, Solving inverse problems using data-driven models, Acta Numer., 28 (2019), pp. 1-174, https://doi.org/10.1017/S0962492919000059. · Zbl 1429.65116
[6] G. Aubert and J.-F. Aujol, A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), pp. 925-946, https://doi.org/10.1137/060671814. · Zbl 1151.68713
[7] S. D. Babacan, R. Molina, and A. Katsaggelos, Generalized Gaussian Markov random field image restoration using variational distribution approximation, in 2008 IEEE Internat. Conf. Acoustics, Speech and Signal Proc., 2008, pp. 1265-1268, https://doi.org/10.1109/ICASSP.2008.4517847.
[8] S. D. Babacan, R. Molina, and A. Katsaggelos, Parameter estimation in TV image restoration using variational distribution approximation, IEEE Trans. Image Process., 17 (2008), pp. 326-339, https://doi.org/10.1109/TIP.2007.916051.
[9] C. Bathke, T. Kluth, C. Brandt, and P. Maaß, Improved image reconstruction in magnetic particle imaging using structural a priori information, Internat. J. Magnetic Particle Imaging, 3 (2017), art. 703015, https://doi.org/10.1088/1361-6420/aaaf63.
[10] I. Bayram and M. E. Kamasak, Directional total variation, IEEE Signal Process. Lett., 19 (2012), pp. 781-784, https://doi.org/10.1109/LSP.2012.2220349.
[11] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), pp. 183-202, https://doi.org/10.1137/080716542. · Zbl 1175.94009
[12] J. Bentley and M. McIlroy, Engineering a sort function, Software Practice Exper., 23 (1993), pp. 1249-1265, https://doi.org/10.1002/spe.4380231105.
[13] M. Bertero, P. Boccacci, and V. Ruggiero, Inverse Imaging with Poisson Data, IOP Publishing, 2018, https://doi.org/10.1088/2053-2563/aae109.
[14] M. Bertero, P. Boccacci, G. Talenti, R. Zanella, and L. Zanni, A discrepancy principle for Poisson data, Inverse Problems, 26 (2010), art. 105004, https://doi.org/10.1088/0266-5611/26/10/105004. · Zbl 1200.62067
[15] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, 1982. · Zbl 0572.90067
[16] A. Blake, P. Kohli, and C. Rother, Markov Random Fields for Vision and Image Processing, The MIT Press, 2011, https://doi.org/10.7551/mitpress/8579.001.0001. · Zbl 1236.68001
[17] Y. G. Boink, M. J. Lagerwerf, W. Steenbergen, S. A. van Gils, S. Manohar, and C. Brune, A framework for directional and higher-order reconstruction in photoacoustic tomography, Phys. Med. Biol., 63 (2018), art. 045018, https://doi.org/10.1088/1361-6560/aaaa4a.
[18] J. Bolte, S. Sabach, and M. Teboulle, Nonconvex Lagrangian-based optimization: Monitoring schemes and global convergence, Math. Oper. Res., 43 (2018), pp. 1210-1232, https://doi.org/10.1287/moor.2017.0900. · Zbl 1440.90072
[19] A. Borji, Pros and cons of GAN evaluation measures, Comput. Vis. Image Und., 179 (2019), pp. 41-65, https://doi.org/10.1016/j.cviu.2018.10.009.
[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2011), pp. 1-122, https://doi.org/10.1561/2200000016. · Zbl 1229.90122
[21] K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), pp. 492-526, https://doi.org/10.1137/090769521. · Zbl 1195.49025
[22] L. Bungert, D. A. Coomes, M. J. Ehrhardt, J. Rasch, R. Reisenhofer, and C.-B. Schönlieb, Blind image fusion for hyperspectral imaging with the directional total variation, Inverse Problems, 34 (2018), art. 044003, https://doi.org/10.1088/1361-6420/aaaf63. · Zbl 1481.94009
[23] M. Burger and S. Osher, A guide to the TV zoo, in Level Set and PDE Based Reconstruction Methods in Imaging, Lecture Notes in Math. 2090, Springer, Cham, 2013, pp. 1-70, https://doi.org/10.1007/978-3-319-01712-9_1. · Zbl 1342.94014
[24] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16 (1995), pp. 1190-1208, https://doi.org/10.1137/0916069. · Zbl 0836.65080
[25] L. Calatroni, C. Cao, J. C. D. los Reyes, C.-B. Schönlieb, and T. Valkonen, Bilevel approaches for learning of variational imaging models, in Variational Methods, De Gruyter, Berlin, Boston, 2017, pp. 252-290, https://doi.org/10.1515/9783110430394-008. · Zbl 1468.94014
[26] L. Calatroni, M. d’Autume, R. Hocking, S. Panayotova, S. Parisotto, P. Ricciardi, and C.-B. Schönlieb, Unveiling the invisible: Mathematical methods for restoring and interpreting illuminated manuscripts, Heritage Sci., 6 (2018), art. 56, https://doi.org/10.1186/s40494-018-0216-z.
[27] L. Calatroni, A. Lanza, M. Pragliola, and F. Sgallari, A flexible space-variant anisotropic regularization for image restoration with automated parameter selection, SIAM J. Imaging Sci., 12 (2019), pp. 1001-1037, https://doi.org/10.1137/18M1227937. · Zbl 1524.94009
[28] L. Calatroni, A. Lanza, M. Pragliola, and F. Sgallari, Space-adaptive anisotropic bivariate Laplacian regularization for image restoration, in VipIMAGE 2019, J. M. R. S. Tavares and R. M. Natal Jorge, eds., Springer, Cham, 2019, pp. 67-76. · Zbl 1524.94009
[29] L. Calatroni, A. Lanza, M. Pragliola, and F. Sgallari, Adaptive parameter selection for weighted-TV image reconstruction problems, J. Phys. Conf. Ser., 1476 (2020), pp. 541-547, https://doi.org/10.1088/1742-6596/1476/1/012003.
[30] D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, Tikhonov regularization and the L-curve for large discrete ill-posed problems, J. Comput. Appl. Math., 123 (2000), pp. 423-446, https://doi.org/10.1016/S0377-0427(00)00414-3. · Zbl 0977.65030
[31] D. Calvetti, A. Pascarella, F. Pitolli, E. Somersalo, and B. Vantaggi, A hierarchical Krylov\textendashBayes iterative inverse solver for MEG with physiological preconditioning, Inverse Problems, 31 (2015), art. 125005, https://doi.org/10.1088/0266-5611/31/12/125005. · Zbl 1329.35346
[32] D. Calvetti, M. Pragliola, and E. Somersalo, Sparsity promoting hybrid solvers for hierarchical Bayesian inverse problems, SIAM J. Sci. Comput., 42 (2020), pp. A3761-A3784, https://doi.org/10.1137/20M1326246. · Zbl 07303422
[33] D. Calvetti, M. Pragliola, E. Somersalo, and A. Strang, Sparse reconstructions from few noisy data: Analysis of hierarchical Bayesian models with generalized gamma hyperpriors, Inverse Problems, 36 (2020), art. 025010, https://doi.org/10.1088/1361-6420/ab4d92. · Zbl 1464.62365
[34] D. Calvetti and E. Somersalo, Hypermodels in the Bayesian imaging framework, Inverse Problems, 24 (2008), art. 034013, https://doi.org/10.1088/0266-5611/24/3/034013. · Zbl 1137.62062
[35] D. Calvetti and E. Somersalo, Statistical methods in imaging, in Handbook of Mathematical Methods in Imaging, Springer, New York, 2015, pp. 1343-1392, https://doi.org/10.1007/978-1-4939-0790-8_53. · Zbl 1331.62322
[36] D. Calvetti, E. Somersalo, and A. Strang, Hierarchical Bayesian models and sparsity: \( \ell_2\)-magic, Inverse Problems, 35 (2019), art. 035003, https://doi.org/10.1088/1361-6420/ab4d92. · Zbl 1490.62078
[37] E. J. Candès, Y. C. Eldar, D. Needell, and P. Randall, Compressed sensing with coherent and redundant dictionaries, Appl. Comput. Harmon. Anal., 31 (2011), pp. 59-73, https://doi.org/10.1016/j.acha.2010.10.002. · Zbl 1215.94026
[38] V. Caselles, A. Chambolle, D. Cremers, M. Novaga, and T. Pock, An introduction to total variation for image analysis, in Theoretical Foundations and Numerical Methods for Sparse Recovery, De Gruyter, Berlin, New York, 2010, pp. 263-340, https://doi.org/10.1515/9783110226157.263. · Zbl 1209.94004
[39] V. Caselles, A. Chambolle, and M. Novaga, The discontinuity set of solutions of the TV denoising problem and some extensions, Multiscale Model. Simul., 6 (2007), pp. 879-894, https://doi.org/10.1137/070683003. · Zbl 1145.49024
[40] V. Caselles, A. Chambolle, and M. Novaga, Total variation in imaging, in Handbook of Mathematical Methods in Imaging, Springer, New York, 2015, pp. 1455-1499, https://doi.org/10.1007/978-1-4939-0790-8_23. · Zbl 1331.68264
[41] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), pp. 89-97, https://doi.org/10.1023/B:JMIV.0000011325.36760.1e /. · Zbl 1366.94048
[42] A. Chambolle, S. E. Levine, and B. J. Lucier, An upwind finite-difference method for total variation-based image smoothing, SIAM J. Imaging Sci., 4 (2011), pp. 277-299, https://doi.org/10.1137/090752754. · Zbl 1213.65030
[43] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), pp. 167-188, https://doi.org/10.1007/s002110050258. · Zbl 0874.68299
[44] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), pp. 120-145, https://doi.org/10.1007/s10851-010-0251-1. · Zbl 1255.68217
[45] A. Chambolle and T. Pock, An introduction to continuous optimization for imaging, Acta Numer., 25 (2016), pp. 161-319, https://doi.org/10.1017/S096249291600009X. · Zbl 1343.65064
[46] A. Chambolle and T. Pock, Approximating the total variation with finite differences or finite elements, in Handbook of Numerical Analysis: Geometric Partial Differential Equations-Part II, Elsevier, 2021, pp. 383-417, https://doi.org/10.1016/bs.hna.2020.10.005. · Zbl 1491.65046
[47] T. Chan, A. Marquina, and P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), pp. 503-516, https://doi.org/10.1137/S1064827598344169. · Zbl 0968.68175
[48] T. F. Chan and S. Esedoḡlu, Aspects of total variation regularized \(L^1\) function approximation, SIAM J. Appl. Math., 65 (2005), pp. 1817-1837, https://doi.org/10.1137/040604297. · Zbl 1096.94004
[49] T. F. Chan, S. Esedoglu, and F. Park, A fourth order dual method for staircase reduction in texture extraction and image restoration problems, in 2010 IEEE International Conference on Image Processing, 2010, pp. 4137-4140, https://doi.org/10.1109/ICIP.2010.5653199.
[50] T. F. Chan, G. H. Golub, and P. Mulet, A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20 (1999), pp. 1964-1977, https://doi.org/10.1137/S1064827596299767. · Zbl 0929.68118
[51] Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), pp. 1383-1406, https://doi.org/10.1137/050624522. · Zbl 1102.49010
[52] C. V. Chung, J. C. D. los Reyes, and C. B. Schönlieb, Learning optimal spatially-dependent regularization parameters in total variation image denoising, Inverse Problems, 33 (2017), art. 074005, https://doi.org/10.1088/1361-6420/33/7/074005. · Zbl 1371.49018
[53] C. Clason, \(L_{\infty}\) fitting for inverse problems with uniform noise, Inverse Problems, 28 (2012), art. 104007. · Zbl 1258.65055
[54] P. Combettes and J. Pesquet, Proximal splitting methods in signal processing, in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New York, 2011, pp. 185-212, https://doi.org/10.1007/978-1-4419-9569-8_10. · Zbl 1242.90160
[55] L. Condat, Primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms, J. Optim. Theory Appl., 158 (2013), pp. 460-479, https://doi.org/10.1007/s10957-012-0245-9. · Zbl 1272.90110
[56] L. Condat, Fast projection onto the simplex and the \(\ell_1\) ball, Math. Program., 158 (2016), pp. 575-585, https://doi.org/10.1007/s10107-015-0946-6. · Zbl 1347.49050
[57] L. Condat, Discrete total variation: New definition and minimization, SIAM J. Imaging Sci., 10 (2017), pp. 1258-1290, https://doi.org/10.1137/16M1075247. · Zbl 1379.68330
[58] V. De Bortoli, A. Durmus, M. Pereyra, and A. F. Vidal, Maximum likelihood estimation of regularization parameters in high-dimensional inverse problems: An empirical Bayesian approach. Part II: Theoretical analysis, SIAM J. Imaging Sci., 13 (2020), pp. 1990-2028, https://doi.org/10.1137/20M1339842. · Zbl 1457.94011
[59] E. Demircan-Tureyen and M. E. Kamasak, Adaptive Direction-Guided Structure Tensor Total Variation, preprint, https://arxiv.org/abs/2001.05717, 2020.
[60] X. Descombes, M. Sigelle, and F. Preteux, Estimating Gaussian Markov random field parameters in a nonstationary framework: Application to remote sensing imaging, IEEE Trans. Image Process., 8 (1999), pp. 490-503, https://doi.org/10.1109/83.753737. · Zbl 1098.94502
[61] F. Dibos and G. Koepfler, Global total variation minimization, SIAM J. Numer. Anal., 37 (2000), pp. 646-664, https://doi.org/10.1137/S0036142998334838. · Zbl 0957.49002
[62] Y. Dong and C.-B. Schönlieb, Tomographic reconstruction with spatially varying parameter selection, Inverse Problems, 36 (2020), art. 054002, https://doi.org/10.1088/1361-6420/ab72d4. · Zbl 1504.68272
[63] I. Drori, D. Cohen-Or, and H. Yeshurun, Fragment-based image completion, ACM Trans. Graph., 22 (2003), pp. 303-312, https://doi.org/10.1145/882262.882267.
[64] J. C. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, Efficient projections onto the \(\ell_1\)-ball for learning in high dimensions, in ICML ’08: Proceedings of the 25th International Conference on Machine Learning, Vol. 3, 2008, pp. 272-279, https://doi.org/10.1145/1390156.1390191.
[65] M. J. Ehrhardt and M. M. Betcke, Multicontrast MRI reconstruction with structure-guided total variation, SIAM J. Imaging Sci., 9 (2016), pp. 1084-1106, https://doi.org/10.1137/15M1047325. · Zbl 1346.47006
[66] M. J. Ehrhardt, P. Markiewicz, M. Liljeroth, A. Barnes, V. Kolehmainen, J. S. Duncan, L. Pizarro, D. Atkinson, B. F. Hutton, S. Ourselin, K. Thielemans, and S. R. Arridge, PET reconstruction with an anatomical MRI prior using parallel level sets, IEEE Trans. Med. Imaging, 35 (2016), pp. 2189-2199, https://doi.org/10.1109/TMI.2016.2549601.
[67] M. J. Ehrhardt, K. Thielemans, L. Pizarro, D. Atkinson, S. Ourselin, B. F. Hutton, and S. R. Arridge, Joint reconstruction of PET-MRI by exploiting structural similarity, Inverse Problems, 31 (2014), art. 015001, https://doi.org/10.1088/0266-5611/31/1/015001. · Zbl 1320.92057
[68] H. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Math. Appl. 375, Springer, Dordrecht, 2000. · Zbl 0859.65054
[69] V. Estellers, S. Soatto, and X. Bresson, Adaptive regularization with the structure tensor, IEEE Trans. Image Process., 24 (2015), pp. 1777-1790, https://doi.org/10.1109/tip.2015.2409562. · Zbl 1408.94166
[70] J. Fehrenbach and J.-M. Mirebeau, Sparse non-negative stencils for anisotropic diffusion, J. Math. Imaging Vis., 49 (2014), pp. 123-147, https://doi.org/10.1007/s10851-013-0446-3. · Zbl 1365.68451
[71] C. Fenu, L. Reichel, and G. Rodriguez, GCV for Tikhonov regularization via global Golub-Kahan decomposition, Numer. Linear Algebra Appl., 23 (2016), https://doi.org/10.1002/nla.2034. · Zbl 1374.65064
[72] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-6 (1984), pp. 721-741, https://doi.org/10.1109/TPAMI.1984.4767596. · Zbl 0573.62030
[73] I. Giakoumis and I. Pitas, Digital restoration of painting cracks, in Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, Vol. 4, 1998, pp. 269-272, https://doi.org/10.1109/ISCAS.1998.698812.
[74] G. H. Golub, M. Heath, and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), pp. 215-223, https://doi.org/10.1080/00401706.1979.10489751. · Zbl 0461.62059
[75] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial nets, in Proceedings of the 27th International Conference on Neural Information Processing Systems, Vol. 2, NIPS’14, MIT Press, Cambridge, MA, 2014, pp. 2672-2680.
[76] M. Grasmair and F. Lenzen, Anisotropic total variation filtering, Appl. Math. Opt., 62 (2010), pp. 323-339, https://doi.org/10.1007/s00245-010-9105-x. · Zbl 1205.35152
[77] M. Guo, C. Han, W. Wang, S. Zhong, R. Lv, and Z. Liu, A novel truncated nonconvex nonsmooth variational method for SAR image despeckling, Remote Sens. Lett., 12 (2021), pp. 174-183, https://doi.org/10.1080/2150704X.2020.1846820.
[78] M. Hanke, Chapter \(8\): The Discrepancy Principle, in A Taste of Inverse Problems, SIAM, Philadelphia, 2017, pp. 55-60, https://doi.org/10.1137/1.9781611974942.ch8. · Zbl 1381.65042
[79] C. He, C. Hu, W. Zhang, and B. Shi, A fast adaptive parameter estimation for total variation image restoration, IEEE Trans. Image Process., 23 (2014), pp. 4954-4967, https://doi.org/10.1109/TIP.2014.2360133. · Zbl 1374.94134
[80] M. Held, P. Wolfe, and H. Crowder, Validation of subgradient optimization, Math. Program., 6 (1974), pp. 62-88, https://doi.org/10.1007/BF01580223. · Zbl 0284.90057
[81] M. Hintermüller and K. Kunisch, Total bounded variation regularization as a bilaterally constrained optimization problem, SIAM J. Appl. Math., 64 (2004), pp. 1311-1333, https://doi.org/10.1137/S0036139903422784. · Zbl 1055.94504
[82] M. Hintermüller and K. Papafitsoros, Generating structured nonsmooth priors and associated primal-dual methods, in Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2, R. Kimmel and X.-C. Tai, eds., Handb. Numer. Anal. 20, Elsevier, 2019, pp. 437-502, https://doi.org/10.1016/bs.hna.2019.08.001. · Zbl 1446.49025
[83] M. Hintermüller, K. Papafitsoros, and C. N. Rautenberg, Analytical aspects of spatially adapted total variation regularisation, J. Math. Anal. Appl., 454 (2017), pp. 891-935, https://doi.org/10.1016/j.jmaa.2017.05.025. · Zbl 1416.94016
[84] M. Hintermüller and C. N. Rautenberg, Optimal selection of the regularization function in a weighted total variation model. Part I: Modelling and theory, J. Math. Imaging Vis., 59 (2017), pp. 498-514, https://doi.org/10.1007/s10851-017-0744-2. · Zbl 1382.94015
[85] M. Hintermüller, C. N. Rautenberg, T. Wu, and A. Langer, Optimal selection of the regularization function in a weighted total variation model. Part II: Algorithm, its analysis and numerical tests, J. Math. Imaging Vis., 59 (2017), pp. 515-533, https://doi.org/10.1007/s10851-017-0736-2. · Zbl 1382.94016
[86] M. Hintermüller and G. Stadler, An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration, SIAM J. Sci. Comput., 28 (2006), pp. 1-23, https://doi.org/10.1137/040613263. · Zbl 1136.94302
[87] Y.-M. Huang, M. K. Ng, and Y.-W. Wen, A new total variation method for multiplicative noise removal, SIAM J. Imaging Sci., 2 (2009), pp. 20-40, https://doi.org/10.1137/080712593. · Zbl 1187.68655
[88] K. Jalalzai, Some remarks on the staircasing phenomenon in total variation-based image denoising, J. Math. Imaging Vis., 54 (2016), pp. 256-268, https://doi.org/10.1007/s10851-015-0600-1. · Zbl 1338.94008
[89] K. M. Jespersen, J. Zangenberg, T. Lowe, P. J. Withers, and L. P. Mikkelsen, Fatigue damage assessment of uni-directional non-crimp fabric reinforced polyester composite using X-ray computed tomography, Comp. Science Tech., 136 (2016), pp. 94-103, https://doi.org/10.1016/j.compscitech.2016.10.006.
[90] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer-Verlag, New York, 2004, https://doi.org/10.1007/b138659. · Zbl 1068.65022
[91] J. P. Kaipio, V. Kolehmainen, M. Vauhkonen, and E. Somersalo, Inverse problems with structural prior information, Inverse Problems, 15 (1999), pp. 713-729, https://doi.org/10.1088/0266-5611/15/3/306. · Zbl 0949.65144
[92] D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes, preprint, https://arxiv.org/abs/1312.6114, 2014.
[93] R. Kongskov and Y. Dong, Directional total generalized variation regularization for impulse noise removal, in Scale Space and Variational Methods in Computer Vision, F. Lauze, Y. Dong, and A. B. Dahl, eds., Springer, Cham, 2017, pp. 221-231. · Zbl 1489.94013
[94] R. Kongskov, Y. Dong, and K. Knudsen, Directional total generalized variation regularization, BIT, 59 (2019), pp. 903-928, https://doi.org/10.1007/s10543-019-00755-6. · Zbl 1429.49035
[95] D. Krishnan and R. Fergus, Fast image deconvolution using hyper-Laplacian priors, in Advances in Neural Information Processing Systems, Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, eds., Curran Associates, 2009, pp. 1033-1041, https://proceedings.neurips.cc/paper/2009/file/3dd48ab31d016ffcbf3314df2b3cb9ce-Paper.pdf.
[96] K. Kunisch and T. Pock, A bilevel optimization approach for parameter learning in variational models, SIAM J. Imaging Sci., 6 (2013), pp. 938-983, https://doi.org/10.1137/120882706. · Zbl 1280.49053
[97] K. Kurach, M. Lucic, X. Zhai, M. Michalski, and S. Gelly, The GAN Landscape: Losses, Architectures, Regularization, and Normalization, 2019, https://openreview.net/forum?id=rkGG6s0qKQ.
[98] A. Lanza, S. Morigi, M. Pragliola, and F. Sgallari, Space-variant generalised Gaussian regularisation for image restoration, Comput. Meth. Biomech. Biomed. Eng. Imaging Vis., 13 (2018), pp. 490-503, https://doi.org/10.1080/21681163.2018.1471620.
[99] A. Lanza, S. Morigi, M. Pragliola, and F. Sgallari, Space-variant TV regularization for image restoration, in VipIMAGE 2017, J. M. R. Tavares and R. Natal Jorge, eds., Springer, Cham, 2018, pp. 160-169.
[100] A. Lanza, S. Morigi, F. Sciacchitano, and F. Sgallari, Whiteness constraints in a unified variational framework for image restoration, J. Math. Imaging Vis., 60 (2018), pp. 1573-7683, https://doi.org/10.1007/s10851-018-0845-6. · Zbl 1433.94014
[101] A. Lanza, S. Morigi, and F. Sgallari, Constrained \(TV_p-\ell_2\) model for image restoration, J. Sci. Comput., 68 (2016), pp. 64-91, https://doi.org/10.1007/s10915-015-0129-x. · Zbl 1344.65025
[102] A. Lanza, M. Pragliola, and F. Sgallari, Residual whiteness principle for parameter-free image restoration, Electron. Trans. Numer. Anal., 53 (2020), pp. 329-351, https://doi.org/10.1553/etna_vol53s329. · Zbl 1455.94027
[103] A. Lanza, M. Pragliola, and F. Sgallari, Automatic fidelity and regularization terms selection in variational image restoration, BIT, 62 (2022), pp. 931-964, https://doi.org/10.1007/s10543-021-00901-z. · Zbl 07569613
[104] T. Le, R. Chartrand, and T. J. Asaki, A variational approach to reconstructing images corrupted by Poisson noise, J. Math. Imaging Vis., 27 (2007), pp. 257-263, https://doi.org/10.1007/s10851-007-0652-y.
[105] Y. Le Montagner, E. D. Angelini, and J. Olivo-Marin, An unbiased risk estimator for image denoising in the presence of mixed Poisson-Gaussian noise, IEEE Trans. Image Process., 23 (2014), pp. 1255-1268, https://doi.org/10.1109/TIP.2014.2300821. · Zbl 1374.94191
[106] S. Lefkimmiatis, A. Roussos, P. Maragos, and M. Unser, Structure tensor total variation, SIAM J. Imaging Sci., 8 (2015), pp. 1090-1122, https://doi.org/10.1137/14098154X. · Zbl 1315.65019
[107] S. Lefkimmiatis, J. P. Ward, and M. Unser, Hessian Schatten-norm regularization for linear inverse problems, IEEE Trans. Image Process., 22 (2013), pp. 1873-1888, https://doi.org/10.1109/TIP.2013.2237919. · Zbl 1373.94229
[108] S. Z. Li, Markov Random Field Modeling in Image Analysis, 3rd ed., Springer-Verlag, Tokyo, Japan, 2009. · Zbl 1183.68691
[109] Y. Li, C. Wu, and Y. Duan, The \(TV_p\) regularized Mumford-Shah model for image labeling and segmentation, IEEE Trans. Image Process., 29 (2020), pp. 7061-7075, https://doi.org/10.1109/TIP.2020.2997524. · Zbl 07586383
[110] R. W. Liu, Y. Li, Y. Liu, J. Duan, T. Xu, and J. Liu, Single-image blind deblurring with hybrid sparsity regularization, in 2017 20th International Conference on Information Fusion (Fusion), 2017, pp. 1-8, https://doi.org/10.23919/ICIF.2017.8009659.
[111] F. Lozes, A. Elmoataz, and O. Lezoray, PDE-based graph signal processing for \(3\)-D color point clouds: Opportunities for cultural heritage, IEEE Signal Process. Mag., 32 (2015), pp. 103-111, https://doi.org/10.1109/MSP.2015.2408631.
[112] M. Lucic, K. Kurach, M. Michalski, O. Bousquet, and S. Gelly, Are GANs created equal? A large-scale study, in NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, Curran Associates, Red Hook, NY, 2018, pp. 698-707.
[113] S. Lunz, O. Öktem, and C.-B. Schönlieb, Adversarial regularizers in inverse problems, in NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds., Vol. 31, Curran Associates, Red Hook, NY, 2018, https://proceedings.neurips.cc/paper/2018/file/d903e9608cfbf08910611e4346a0ba44-Paper.pdf.
[114] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures, American Mathematical Society, 2001. · Zbl 0987.35003
[115] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, Spectral normalization for generative adversarial networks, in Internet. Conf. Learning Repres., 2018, https://openreview.net/forum?id=B1QRgziT-.
[116] V. Monga, Y. Li, and Y. C. Eldar, Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing, IEEE Signal Process. Mag., 38 (2021), pp. 18-44, https://doi.org/10.1109/MSP.2020.3016905.
[117] V. A. Morozov, On the solution of functional equations by the method of regularization, Dokl. Akad. Nauk SSSR, 167 (1966), pp. 510-512. · Zbl 0187.12203
[118] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Appl. Optim. 87, Kluwer Academic, Boston, 2004. · Zbl 1086.90045
[119] M. Nikolova, Local strong homogeneity of a regularized estimator, SIAM J. Appl. Math., 61 (2000), pp. 633-658, https://doi.org/10.1137/S0036139997327794. · Zbl 0991.94015
[120] M. Nikolova, A variational approach to remove outliers and impulse noise, J. Math. Imaging Vis., 20 (2004), pp. 99-120, https://doi.org/10.1023/B:JMIV.0000011326.88682.e5. · Zbl 1366.94065
[121] P. Ochs, Y. Chen, T. Brox, and T. Pock, iPiano: Inertial proximal algorithm for nonconvex optimization, SIAM J. Imaging Sci., 7 (2014), pp. 1388-1419, https://doi.org/10.1137/130942954. · Zbl 1296.90094
[122] J. Oliveira, J. Bioucas-Dias, and M. A. T. Figueiredo, Adaptive total variation image deblurring: A majorization-minimization approach, Signal Process., 89 (2009), pp. 1683-1693, https://doi.org/10.1016/j.sigpro.2009.03.018. · Zbl 1178.94029
[123] Z.-F. Pang, H.-L. Zhang, S. Luo, and T. Zeng, Image denoising based on the adaptive weighted \(TV^P\) regularization, Signal Process., 167 (2020), art. 107325, https://doi.org/10.1016/j.sigpro.2019.107325.
[124] K. Papafitsoros and C.-B. Schönlieb, A combined first and second order variational approach for image reconstruction, J. Math. Imaging Vis., 48 (2014), pp. 308-338, https://doi.org/10.1007/s10851-013-0445-4. · Zbl 1362.94009
[125] S. Parisotto, L. Calatroni, A. Bugeau, N. Papadakis, and C. B. Schönlieb, Variational osmosis for non-linear image fusion, IEEE Trans. Image Process., 29 (2020), pp. 5507-5516, https://doi.org/10.1109/TIP.2020.2983537.
[126] S. Parisotto, J. Lellmann, S. Masnou, and C. B. Schönlieb, Higher order total directional variation: Imaging applications, SIAM J. Imaging Sci., 13 (2020), pp. 2063-2104, https://doi.org/10.1137/19M1239209. · Zbl 07292249
[127] S. Parisotto, S. Masnou, and C. B. Schönlieb, Higher order total directional variation: Analysis, SIAM J. Imaging Sci., 13 (2020), pp. 474-496, https://doi.org/10.1137/19M1239210. · Zbl 1444.47020
[128] M. Pereyra and S. McLaughlin, Fast unsupervised Bayesian image segmentation with adaptive spatial regularisation, IEEE Trans. Image Process., 26 (2017), pp. 2577-2587. · Zbl 1409.94486
[129] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), pp. 629-639, https://doi.org/10.1109/34.56205.
[130] H. Raguet, J. Fadili, and G. Peyré, A generalized forward-backward splitting, SIAM J. Imaging Sci., 6 (2013), pp. 1199-1226, https://doi.org/10.1137/120872802. · Zbl 1296.47109
[131] K. N. Ramamurthy, J. J. Thiagarajan, and A. Spanias, Fast image registration with non-stationary Gauss-Markov random field templates, in 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, pp. 185-188, https://doi.org/10.1109/ICIP.2009.5414177.
[132] A. Roussos and P. Maragos, Tensor-based image diffusions derived from generalizations of the total variation and Beltrami functionals, in 2010 IEEE International Conference on Image Processing, 2010, pp. 4141-4144, https://doi.org/10.1109/ICIP.2010.5653241.
[133] L. Rudin, P.-L. Lions, and S. Osher, Multiplicative denoising and deblurring: Theory and algorithms, in Geometric Level Set Methods in Imaging, Vision, and Graphics, Springer, New York, 2003, pp. 103-119, https://doi.org/10.1007/0-387-21810-6_6.
[134] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259-268, https://doi.org/10.1016/0167-2789(92)90242-F. · Zbl 0780.49028
[135] L. Ruthotto and E. Haber, An introduction to deep generative modeling, GAMM-Mitt., 44 (2021), art. e202100008, https://doi.org/10.1002/gamm.202100008. · Zbl 1531.68009
[136] S. R. Sandoghchi, G. T. Jasion, N. V. Wheeler, S. Jain, Z. Lian, J. P. Wooler, R. P. Boardman, N. Baddela, Y. Chen, J. Hayes, E. N. Fokoua, T. Bradley, D. R. Gray, S. M. Mousavi, M. Petrovich, F. Poletti, and D. J. Richardson, X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms, Opt. Express, 22 (2014), pp. 26181-26192, https://doi.org/10.1364/OE.22.026181.
[137] A. Sawatzky, C. Brune, J. Müller, and M. Burger, Total variation processing of images with Poisson statistics, in Computer Analysis of Images and Patterns, X. Jiang and N. Petkov, eds., Springer, Berlin, Heidelberg, 2009, pp. 533-540.
[138] H. Scharr, M. J. Black, and H. W. Haussecker, Image statistics and anisotropic diffusion, in Proceedings of the 9th IEEE International Conference on Computer Vision, Vol. 2, 2003, pp. 840-847, https://doi.org/10.1109/ICCV.2003.1238435.
[139] S. Setzer and G. Steidl, Variational methods with higher order derivatives in image processing, in Approximation Theory XII: San Antonio 2007, Nashboro Press, Brentwood, TN, 2008, pp. 360-385. · Zbl 1175.68520
[140] J. Shi and S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model, SIAM J. Imaging Sci., 1 (2008), pp. 294-321, https://doi.org/10.1137/070689954. · Zbl 1185.94018
[141] G. Steidl and T. Teuber, Removing multiplicative noise by Douglas-Rachford splitting methods, J. Math. Imaging Vis., 36 (2009), pp. 168-184. · Zbl 1287.94016
[142] C. M. Stein, Estimation of the mean of a multivariate normal distribution, Ann. Statist., 9 (1981), pp. 1135-1151, https://doi.org/10.1214/aos/1176345632. · Zbl 0476.62035
[143] D. Strong and T. Chan, Edge-preserving and scale-dependent properties of total variation regularization, Inverse Problems, 19 (2003), pp. S165-S187, https://doi.org/10.1088/0266-5611/19/6/059. · Zbl 1043.94512
[144] A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), pp. 451-559, https://doi.org/10.1017/S0962492910000061. · Zbl 1242.65142
[145] T. Teuber, G. Steidl, and R. H. Chan, Minimization and parameter estimation for seminorm regularization models with I-divergence constraints, Inverse Problems, 29 (2013), art. 035007, https://doi.org/10.1088/0266-5611/29/3/035007. · Zbl 1267.65046
[146] R. Tovey, M. Benning, C. Brune, M. J. Lagerwerf, S. M. Collins, R. K. Leary, P. A. Midgley, and C. B. Schönlieb, Directional sinogram inpainting for limited angle tomography, Inverse Problems, 35 (2019), art. 024004, https://doi.org/10.1088/1361-6420/aaf2fe. · Zbl 1407.92074
[147] A. F. Vidal, V. De Bortoli, M. Pereyra, and A. Durmus, Maximum likelihood estimation of regularization parameters in high-dimensional inverse problems: An empirical Bayesian approach part I: Methodology and experiments, SIAM J. Imaging Sci., 13 (2020), pp. 1945-1989, https://doi.org/10.1137/20M1339829. · Zbl 1457.94014
[148] Y. Wang, W. Yin, and J. Zeng, Global convergence of ADMM in nonconvex nonsmooth optimization, J. Sci. Comput., 78 (2019), pp. 29-63, https://doi.org/10.1007/s10915-018-0757-z. · Zbl 1462.65072
[149] Z. Wang, A. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), pp. 600-612, https://doi.org/10.1109/TIP.2003.819861.
[150] J. Weickert, Anisotropic Diffusion in Image Processing, B.G. Teubner, Stuttgart, 1998. · Zbl 0886.68131
[151] J. Weickert and T. Brox, Diffusion and regularization of vector- and matrix-valued images, in Inverse Problems, Image Analysis, and Medical Imaging, AMS, 2002, pp. 251-268, http://lmb.informatik.uni-freiburg.de/Publications/2002/Bro02a. · Zbl 1047.68143
[152] B. Widrow and I. Kollár, Quantization Noise: Roundoff Error in Digital Computation, Signal Processing, Control, and Communications, Cambridge University Press, 2008, https://doi.org/10.1017/CBO9780511754661.
[153] R. M. Willett, Z. T. Harmany, and R. F. Marcia, Poisson image reconstruction with total variation regularization, in 2010 IEEE International Conference on Image Processing, 2010, pp. 4177-4180, https://doi.org/10.1109/ICIP.2010.5649600.
[154] C. Wu and X.-C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), pp. 300-339, https://doi.org/10.1137/090767558. · Zbl 1206.90245
[155] Q. Xie, D. Zeng, Q. Zhao, D. Meng, Z. Xu, Z. Liang, and J. Ma, Robust low-dose CT sinogram preprocessing via exploiting noise-generating mechanism, IEEE Trans. Med. Imaging, 36 (2017), pp. 2487-2498, https://doi.org/10.1109/TMI.2017.2767290.
[156] J. Yan, F. Wang, X. Cao, and J. Zhang, Robust object tracking using least absolute deviation, Image Vision Comput., 32 (2014), p. 930-939, https://doi.org/10.1016/j.imavis.2014.08.008.
[157] H. Zhang and Y. Wang, Edge adaptive directional total variation, J. Engrg., 2013 (2013), pp. 61-62, https://doi.org/10.1049/joe.2013.0116.
[158] J. Zhang, A. Gelb, and T. Scarnati, Empirical Bayesian Inference Using Joint Sparsity, preprint, https://arxiv.org/abs/2103.15618, 2021.
[159] H. Zhao, Y. Liu, C. Huang, and T. Wang, Hybrid-weighted total variation and nonlocal low-rank-based image compressed sensing reconstruction, IEEE Access, 8 (2020), pp. 23002-23010, https://doi.org/10.1109/ACCESS.2020.2970158.
[160] H. Zhou and J. Zheng, Adaptive patch size determination for patch-based image completion, in 2010 IEEE International Conference on Image Processing, 2010, pp. 421-424, https://doi.org/10.1109/ICIP.2010.5654120.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.