×

Linear functional strategy and the approximate inverse for nonlinear ill-posed problems. (English) Zbl 07723934

Summary: This article generalizes the results of the so-called linear functional strategy [R. S. Anderssen, Inverse Problems (Oberwolfach, 1986)], used for fast reconstruction of some particular feature of interest in the solution of a linear inverse problem. Two versions are proposed for nonlinear problems. The first one applies to differentiable forward operators and is based on the One-Step Newton method. The second one, in turn, uses a linearization of the forward operator obtained by the employment of basic Machine Learning techniques, being applicable to non-differentiable operators. As a byproduct of the proposed methods, we derive two variants of the so-called approximate inverse method [A. K. Louis, Inverse Problems, 1996] for nonlinear inverse problems. Numerical tests, using electrical impedance tomography applied to a biphasic flow problem, are presented to test the efficiency of the proposed methods.

MSC:

65Fxx Numerical linear algebra
65Hxx Nonlinear algebraic or transcendental equations
65Rxx Numerical methods for integral equations, integral transforms

Software:

KAIRUAIN
Full Text: DOI

References:

[1] Anderssen, R. S., Inverse Problems (Oberwolfach, 1986), volume 77 of International Schriftenreihe Numerical Mathematics, The linear functional strategy for improperly posed problems, 11-30 (1986), Basel: Birkhäuser, Basel · Zbl 0603.65087
[2] Louis, A. K., Corrigendum: “Approximate inverse for linear and some nonlinear problems” [Inverse Problems 11 (1995), no. 6, 1211-1223; MR1361769 (96f:65068)], Inverse Probl, 12, 2, 175-190 (1996) · doi:10.1088/0266-5611/11/6/006
[3] Natterer, F., The Mathematics of Computerized Tomography, volume 32 of Classics in Applied Mathematics (2001), Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA · Zbl 0973.92020
[4] Kreyszig, E., Introductory Functional Analysis with Applications. Wiley Classics Library (1989), New York: Wiley, New York · Zbl 0706.46001
[5] Likht, M. K., On the calculation of functionals in the solution of linear equations of the first kind, USSR Comput. Math. Math. Phys, 7, 3, 271-278 (1967) · Zbl 0188.21902 · doi:10.1016/0041-5553(67)90046-8
[6] Backus, G.; Gilbert, F., Numerical applications of a formalism for geophysical inverse problems, Geophys. J. R. Astron. Soc, 13, 247-276 (1967) · doi:10.1111/j.1365-246X.1967.tb02159.x
[7] Golberg, M. A., A method of adjoints for solving some ill-posed equations of the first kind, Appl. Math. Comput, 5, 2, 123-129 (1979) · Zbl 0397.65037
[8] Flax, A. H., Reverse-flow and variational theorems for lifting surfaces in nonstationary compressible flow, J. Aeronaut. Sci, 20, 120-126 (1953) · Zbl 0050.20101 · doi:10.2514/8.2553
[9] Louis, A. K.; Maass, P., A mollifier method for linear operator equations of the first kind, Inverse Probl, 6, 3, 427-440 (1990) · Zbl 0713.65040 · doi:10.1088/0266-5611/6/3/011
[10] Schuster, T., The Method of Approximate Inverse: Theory and Applications, volume 1906 of Lecture Notes in Mathematics (2007), Berlin: Springer, Berlin · Zbl 1171.65001
[11] Louis, A. K., A unified approach to regularization methods for linear ill-posed problems, Inverse Probl, 15, 2, 489-498 (1999) · Zbl 0933.65060 · doi:10.1088/0266-5611/15/2/009
[12] Rieder, A.; Schuster, T., The approximate inverse in action with an application to computerized tomography, SIAM J. Numer. Anal., 37, 6, 1909-1929 (2000) · Zbl 0961.65112 · doi:10.1137/S0036142998347619
[13] Rieder, A.; Schuster, T., The approximate inverse in action. II. Convergence and stability, Math. Comp., 72, 243, 1399-1415 (2003) · Zbl 1022.65066 · doi:10.1090/S0025-5718-03-01526-6
[14] Rieder, A.; Schuster, T., The approximate inverse in action. III. 3D-Doppler tomography, Numer. Math, 97, 2, 353-378 (2004) · Zbl 1071.65178 · doi:10.1007/s00211-003-0512-7
[15] Schuster, T.; Rieder, A.; Schöpfer, F., The approximate inverse in action: IV. Semi-discrete equations in a Banach space setting, Inverse Probl, 28, 10, 104001-19 (2012) · Zbl 1259.65078 · doi:10.1088/0266-5611/28/10/104001
[16] Alakel Abazid, M.; Lakhal, A.; Louis, A. K., Inverse design of anti-reflection coatings using the nonlinear approximate inverse, Inverse Probl. Sci. Eng, 24, 6, 917-935 (2016) · Zbl 1342.65237 · doi:10.1080/17415977.2015.1077446
[17] Abdullah, H.; Louis, A. K., The approximate inverse for solving an inverse scattering problem for acoustic waves in an inhomogeneous medium, Inverse Probl, 15, 5, 1213-1229 (1999) · Zbl 0943.35099 · doi:10.1088/0266-5611/15/5/307
[18] Lakhal, A., KAIRUAIN-algorithm applied on electromagnetic imaging, Inverse Probl, 29, 9, 095001 (2013) · Zbl 1290.78010 · doi:10.1088/0266-5611/29/9/095001
[19] Lakhal, A., A direct method for nonlinear ill-posed problems, Inverse Probl, 34, 2, 025002 (2018) · Zbl 1453.65125 · doi:10.1088/1361-6420/aa91e0
[20] Cheney, M.; Isaacson, D.; Newell, J. C.; Goble, J., NOSER: An algorithm for solving the inverse conductivity problem, Int. J. Imaging Syst. Technol., 2, 2, 66-75 (1990) · doi:10.1002/ima.1850020203
[21] Calderón, A. P., Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), On an inverse boundary value problem, 65-73 (1980), Rio de Janeiro: Sociedade Brasileira de Matemática, Rio de Janeiro
[22] Borcea, L., Electrical impedance tomography, Inverse Probl, 18, 6, R99-R136 (2002) · Zbl 1031.35147 · doi:10.1088/0266-5611/18/6/201
[23] Cheney, M.; Isaacson, D.; Newell, J. C., Electrical impedance tomography, SIAM Rev., 41, 1, 85-101 (1999) · Zbl 0927.35130 · doi:10.1137/S0036144598333613
[24] Lechleiter, A.; Rieder, A., Newton regularizations for impedance tomography: convergence by local injectivity, Inverse Probl, 24, 6, 065009 (2008) · Zbl 1152.35516 · doi:10.1088/0266-5611/24/6/065009
[25] Zainal-Mokhtar, K.; Mohamad-Saleh, J., An oil fraction neural sensor developed using Electrical Capacitance Tomography sensor data, Sensors, 13, 9, 11385-11406 (2013) · doi:10.3390/s130911385
[26] Ismail, I.; Gamio, J. C.; Bukhari, S. F. A.; Yang, W. Q., Tomography for multi-phase flow measurement in the oil industry, Flow Meas. Instrum, 16, 2-3, 145-155 (2005) · doi:10.1016/j.flowmeasinst.2005.02.017
[27] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems, volume 375 of Mathematics and its Applications (1996), Dordrecht: Kluwer Academic Publishers Group, Dordrecht · Zbl 0859.65054
[28] Rieder, A., Keine Probleme mit inversen Problemen (2003), Braunschweig: Friedr. Vieweg & Sohn, Braunschweig · Zbl 1057.65035
[29] Nashed, M. Z.; Engl, H. W.; Groetsch, C. W., Inverse Ill-posed Problems. Notes and Reports in Mathematics in Science and Engineering, 4, A new approach to classification and regularization of ill-posed operator equations, 53-75 (1987), London: Academic Press, London
[30] Lechleiter, A.; Rieder, A., Towards a general convergence theory for inexact Newton regularizations, Numer. Math., 114, 3, 521-548 (2010) · Zbl 1201.65090 · doi:10.1007/s00211-009-0256-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.