×

The generalized Nagell-Ljunggren problem: powers with repetitive representations. (English) Zbl 1475.11050

In this paper, the authors consider a generalization of the classical Nagell-Ljunggren equation \[ y^q=\frac{b^n-1}{b-1}, \] which concerns the problem of finding perfect powers that are “repunits” in base-\(b\). They classify when it is possible to have infinitely many perfect powers that have a base-\(b\) representation comprised of the concatenation of multiple copies of a fixed word. To be precise, they consider the Diophantine equation \[ y^q=c \frac{b^{n\ell}-1}{b^\ell-1}, \] where \(c\) is an integer with \(b^{\ell-1} \leq c < b^\ell\), and we have \(q, n \geq 2\). If we call a triple \((q,n,\ell)\) admissible if either \((q,n)=(2,2)\), \((n,\ell)=(2,1)\), or \[ (q,n,\ell) \in \{ (2,3,1), (2,3,2), (3,2,2), (3,2,3), (3,3,1), (2,4,1), (4,2,2) \}, \] then the authors’ main result is that there are at most finitely many solutions to the general equation with triples \((q,n,\ell)\) that are not admissible, under the assumption of the \(ABC\)-Conjecture of Masser and Oesterlé. In the case of admissible triples, they explicitly construct infinitely many corresponding solutions. These constructions for admissible triples all essentially come from finding infinitely many integers of certain given fixed norms in real quadratic fields.

MSC:

11D61 Exponential Diophantine equations
11A63 Radix representation; digital problems
11Y50 Computer solution of Diophantine equations
11D41 Higher degree equations; Fermat’s equation

Software:

OEIS

References:

[1] Bennett, [Bennett 01] M., Rational Approximation to Algebraic Numbers of Small Height: The Diophantine Equation ax^n − by^n| = 1|., J. Reine Angew. Math., 535, 1-49 (2001) · Zbl 1002.11059
[2] Bennett, [Bennett And Levin 15] M.; Levin, A., The Nagell-Ljunggren Equation Via Runge’s Method., Monatsh. Math., 177, 15-31 (2015) · Zbl 1395.11060
[3] Berstel, [Berstel 95] J., Axel Thue’s Papers on Repetitions in Words: A Translation (1995)
[4] Boute, [Boute 00] R. T., Zeroless Positional Number Representation and String Ordering., Amer. Math. Monthly, 107, 437-444 (2000) · Zbl 0979.11004
[5] Broughan, [Broughan 12] K. A., An Explicit Bound for Aliquot Cycles of Repdigits, INTEGERS, 12 (2012) · Zbl 1275.11008
[6] Browkin, [Browkin 00] J., The abc-Conjecture (2000), Number Theory, Trends Math., pp. 75-105. Boston: Birkhäuser · Zbl 0971.11010
[7] Browkin, [Browkin 08] J., A Weak Effective abc-Conjecture., Funct. Approx. Comment. Math., 39, 103-111 (2008) · Zbl 1241.11033
[8] Bugeaud, [Bugeaud 02] Y., Linear Forms in Two m-adic Logarithms and Applications to Diophantine Problems., Compositio Math., 132, 137-158 (2002) · Zbl 1171.11318
[9] Bugeaud, [Bugeaud Et Al. 02] Y.; Hanrot, G.; Mignotte, M., Sur l’équation diophantienne (x^n − 1)/(x − 1) = y^q. III., Proc. Lond. Math. Soc., 84, 59-78 (2002) · Zbl 1102.11305
[10] Bugeaud, [Bugeaud And Mignotte 99A] Y.; Mignotte, M., On Integers with Identical Digits., Mathematika, 46, 411-417 (1999) · Zbl 1033.11012
[11] Bugeaud, [Bugeaud And Mignotte 99B] Y.; Mignotte, M., Sur l’équation diophantienne (x^n − 1)/(x − 1) = y^q. II., C. R. Acad. Sci. Paris, 328, 741-744 (1999) · Zbl 0946.11008
[12] Bugeaud, [Bugeaud And Mignotte 02] Y.; Mignotte, M., L’équation de Nagell-Ljunggren ., Enseign. Math., 48, 147-168 (2002) · Zbl 1040.11015
[13] Bugeaud, [Bugeaud Et Al. 00] Y.; Mignotte, M.; Roy, Y., On the Diophantine Equation (x^n − 1)/(x − 1) = y^q., Pacific J. Math., 193, 257-268 (2000) · Zbl 1064.11030
[14] Bugeaud, [Bugeaud Et Al. 99] Y.; Mignotte, M.; Roy, Y.; Shorey, T. N., The Equation (x^n − 1)/(x − 1) = y^q has no Solution with x Square., Math. Proc. Cambridge Phil. Soc., 127, 353-372 (1999) · Zbl 0940.11020
[15] Bugeaud, [Bugeaud And Mihăilescu 07] Y.; Mihăilescu, P., On the Nagell-Ljunggren Equation ., Math. Scand., 101, 177-183 (2007) · Zbl 1151.11016
[16] Cilleruelo, [Cilleruelo Et Al. 09] J.; Luca, F.; Shparlinski, I. E., Power Values of Palindromes., J. Combin. Number Theory, 1, 101-107 (2009) · Zbl 1235.11028
[17] Davis, [Davis And Weyuker 83] M. D.; Weyuker, E. J., Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science (1983), New York: Academic Press, New York · Zbl 0569.68042
[18] Forslund, [Forslund 95] R. R., A Logical Alternative to the Existing Positional Number System., Southwest J. Pure Appl. Math., 1, 27-29 (1995) · Zbl 0857.11003
[19] Foster, [Foster 47] J. E., A number System Without a Zero Symbol, Math. Mag., 21, 1, 39-41 (1947)
[20] Granville, [Granville 07] A., Rational and Integral Points on Quadratic Twists of a Given Hyperelliptic Curve, Int. Math. Res. Not. IMRN, 8 (2007) · Zbl 1129.11028
[21] Granville, [Granville And Tucker 02] A.; Tucker, T. J., It’s as Easy as abc., Notices Amer. Math. Soc., 49, 1224-1231 (2002) · Zbl 1160.11318
[22] Hernández, [Hernández And Luca 06] S.; Luca, F., Palindromic Powers., Rev. Colombiana Mat., 40, 81-86 (2006) · Zbl 1189.11020
[23] Hirata-Kohno, [Hirata-Kohno And Shorey 97] N.; Shorey, T. N., On the Equation (x^m − 1)/(x − 1) = y^q with x Power (1997), London Math. Soc. Lecture Note Series, vol. 247, edited by Y. Motohashi, pp. 343-351. Cambridge: Cambridge University Press · Zbl 0904.11009
[24] Jacobson, Jr., [Jacobson And Williams 09] M. J.; Williams, H. C., Solving the Pell Equation (2009), CMS Books in Mathematics, New York: Springer, CMS Books in Mathematics, New York · Zbl 1177.11027
[25] Kihel, [Kihel 09] O., A Note on the Nagell-Ljunggren Diophantine Equation ., JP J. Algebra Number Theory Appl., 13, 131-135 (2009) · Zbl 1228.11041
[26] Knuth, [Knuth 69] D. E., The Art of Computer Programming. Volume 2: Seminumerical Algorithms (1969), Reading, Mass: Addison-Wesley, Reading, Mass · Zbl 0191.18001
[27] Korec, [Korec 91] I., Palindromic Squares for Various Number System Bases., Math. Slovaca, 41, 261-276 (1991) · Zbl 0755.11004
[28] Laishram, [Laishram And Shorey 12] S.; Shorey, T. N., Baker’s Explicit abc-Conjecture and Applications., Acta Arith., 155, 419-429 (2012) · Zbl 1276.11048
[29] Le, [Le 94] M. H., A Note on the Diophantine Equation ., Math. Proc. Cambridge Phil. Soc., 116, 385-389 (1994) · Zbl 0821.11021
[30] Lekkerkerker, [Lekkerkerker 52] C. G., Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci., Simon Stevin, 29, 190-195 (1952) · Zbl 0049.03101
[31] Li, [Li And Li 14] J.; Li, X., On the Nagell-Ljunggren Equation and Edgar’s Conjecture., Int. J. Appl. Math. Stat., 52, 80-83 (2014) · Zbl 1339.11049
[32] Ljunggren, [Ljunggren 43A] W., Einige Bemerkungen über die Darstellung ganzer Zahlen durch binäre kubische Formen mit positiver Diskriminante., Acta Math., 75, 1-21 (1943) · Zbl 0060.09104
[33] Ljunggren, [Ljunggren 43B] W., Noen setninger om ubestemte likninger av formen (x^n − 1)/(x − 1) = y^q., Norsk. Mat. Tidsskr., 25, 17-20 (1943) · Zbl 0028.00901
[34] Masser, [Masser 85] D. W., Problem (1985), p. 25. Book of Abstracts of Conference. London: Department of Mathematics, Imperial College
[35] Mihăilescu, [Mihăilescu 07] P., New Bounds and Conditions for the Equation of Nagell-Ljunggren., J. Number Theory, 124, 380-395 (2007) · Zbl 1127.11021
[36] Mihăilescu, [Mihăilescu 08] P., Class Number Conditions for the Diagonal Case of the Equation of Nagell and Ljunggren (2008), Dev. Math., vol. 16, pp. 245-273. New York: Springer-Verlag · Zbl 1239.11036
[37] Nagell, [Nagell 20] T., Note sur l’équation indéterminée (x^n − 1)/(x − 1) = y^q., Norsk. Mat. Tidsskr., 2, 75-78 (1920) · JFM 47.0121.03
[38] Nagell, [Nagell 21] T., Des équations indéterminées x^2 + x + 1 = y^n et x^2 + x + 1 = 3y^n, Norsk Mat. Forenings Skrifter (1921) · JFM 48.0138.01
[39] Nitaj, [Nitaj 96] A., La conjecture abc., Enseign. Math., 42, 3-24 (1996) · Zbl 0856.11014
[40] Obláth, [Obláth 56] R., Une propriété des puissances parfaites., Mathesis, 65, 356-364 (1956) · Zbl 0072.26503
[41] Sloane, [Sloane Et Al. 17] N. J. A., The On-Line Encyclopedia of Integer Sequences (2017)
[42] Oesterlé, [Oesterlé 88] J., Nouvelles approches du “théorème” de Fermat, Astérisque, 165-186 (1988) · Zbl 0668.10024
[43] Robert, [Robert Et Al. 14] O.; Stewart, C.; Tenenbaum, G., A Refinement of the abc Conjecture., Bull. Lond. Math. Soc., 46, 1156-1166 (2014) · Zbl 1357.11044
[44] Salomaa, [Salomaa 73] A., Formal Languages (1973), Cambridge, MA: Academic Press, Cambridge, MA · Zbl 0262.68025
[45] Shorey, [Shorey 86] T. N., On the Equation z^q = (x^n − 1)/(x − 1)., Indag. Math., 48, 345-351 (1986) · Zbl 0603.10018
[46] Shorey, [Shorey 00] T. N., Some Conjectures in the Theory of Exponential Diophantine Equations., Publ. Math. (Debrecen), 56, 631-641 (2000) · Zbl 0961.11012
[47] Smullyan, [Smullyan 61] R. M., Theory of Formal Systems, Annals of Mathematical Studies. vol., 47 (1961), Princeton: Princeton University Press, Princeton · Zbl 0218.02030
[48] Stewart, [Stewart And Tijdeman 86] C. L.; Tijdeman, R., On the Oesterlé-Masser Conjecture., Monatsh. Math., 102, 251-257 (1986) · Zbl 0597.10042
[49] Thue, [Thue 06] A., Über unendliche Zeichenreihen (139158), 1-22. Reprinted in Selected Mathematical Papers of Axel Thue, edited by T. Nagell (Oslo: Universitetsforlaget, 1977) · JFM 37.0066.17
[50] Thue, [Thue 12] A., Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen., Norske vid. Selsk. Skr. Mat. Nat. Kl., 1, 1-67 (1912) · JFM 43.0162.07
[51] Yates, [Yates 78] S., The Mystique of Repunits., Math. Mag., 51, 22-28 (1978) · Zbl 0387.10005
[52] Zeckendorf, [Zeckendorf 72] E., Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres Lucas., Bull. Soc. Roy. Liége, 41, 179-182 (1972) · Zbl 0252.10011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.