×

Tunable optomechanically induced transparency and Fano resonance in optomechanical system with levitated nanosphere. (English) Zbl 1416.82053

Summary: We analytically investigate the phenomena of optomechanically induced transparency and Fano resonance in optomechanical system with levitated nanosphere trapped inside Fabry-Perot cavity. We report that mechanical oscillator and nanosphere play their independent role in our system. We demonstrate that, an OMIT window exists in the absence of coupling between the nanosphere and the cavity. However the interaction of nanosphere evolves to display fano profile, besides the OMIT window, in the output at the probe frequency. We also report that the Fano profile and the width of the OMIT window can be controlled simultaneously by appropriate system’s parameters. Within the experimental reach, based on our analytical results, we find that the optomechanical system with levitated nanosphere provides great flexibility to tune the OMIT and the Fano resonances by controlling the system’s parameters.

MSC:

82D80 Statistical mechanics of nanostructures and nanoparticles
81P40 Quantum coherence, entanglement, quantum correlations
78A60 Lasers, masers, optical bistability, nonlinear optics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
81V80 Quantum optics
Full Text: DOI

References:

[1] Harris, S.E., Field, J.E., Imamoǧlu, A.: Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107 (1990) · doi:10.1103/PhysRevLett.64.1107
[2] Safavi-Naeini, A.H., Mayer Alegre, T.P., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, Q., Chang, D., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature (London) 472, 69 (2011) · doi:10.1038/nature09933
[3] Lambropoulos, P., Zoller, P.: Autoionizing states in strong laser fields. Phys. Rev. A 24, 379 (1981) · doi:10.1103/PhysRevA.24.379
[4] Bachau, H., Lambropoulos, P., Shakeshaft, R.: Theory of laser-induced transitions between autoionizing states of He. Phys. Rev. A 34, 4785 (1986) · doi:10.1103/PhysRevA.34.4785
[5] Rzaznewski, K., Eberly, J.H.: Confluence of bound-free coherences in laser-induced autoionization. Phys. Rev. Lett. 47, 408 (1981) · doi:10.1103/PhysRevLett.47.408
[6] Deng, Z., Eberly, J.H.: Double-resonance effects in strong-field autoionization. J. Opt. Soc. Am. B 1, 102 (1984) · doi:10.1364/JOSAB.1.000102
[7] Ravi, S., Agarwal, G.S.: Absorption spectroscopy of strongly perturbed bound-continuum transitions. Phys. Rev. A 35, 3354 (1987) · doi:10.1103/PhysRevA.35.3354
[8] Haan, S.L., Agarwal, G.S.: Stability of dressed states against radiative decay in strongly coupled bound-continuum transitions. Phys. Rev. A 35, 4592 (1987) · doi:10.1103/PhysRevA.35.4592
[9] Knight, P.L., Lauder, M.A., Dalton, B.: Laser-induced continuum structure. J. Phys. Rep. 190, 1-61 (1990) · doi:10.1016/0370-1573(90)90089-K
[10] Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in a mechanical effects of light. Phys. Rev. A 81, 041803 (2010) · doi:10.1103/PhysRevA.81.041803
[11] Huang, S., Agarwal, G.S.: Electromagnetically induced transparency from the two phonon process in quadratically coupled membrane. Phys. Rev. A 83, 023823 (2011) · doi:10.1103/PhysRevA.83.023823
[12] Safavi-Naeini, A.H., Mayer Alegre, T.P., Winger, M., Painter, O.: Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity. Appl. Phys. Lett. 97, 181106 (2010) · doi:10.1063/1.3507288
[13] Lin, C.D., Chu, W.C.: Controlling atomic line shapes. Science 340, 694 (2013) · doi:10.1126/science.1238396
[14] Ott, C. et al.: Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716 (2013) · doi:10.1126/science.1234407
[15] Miroshnickenko, A.E., Flach, S., Kivshar, Y.S.: Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257 (2010) · doi:10.1103/RevModPhys.82.2257
[16] Fano, U: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 78, 1241866 (1961) · Zbl 0116.23405
[17] Xiao, S et al.: Talking through the continuum: New manifestations of Fano-Resonance phenomenology realized with mesoscopic nanostructures. Phys. 61, 348 (2013) · Zbl 1338.82084
[18] Verellen, N., Sonnefraud, Y., Sobhani, H., Hao, F., Moshchalkov, V.V., Van Dorpe, P., Nordlander, P., Maier, S.A.: Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 09, 1663 (2009) · doi:10.1021/nl9001876
[19] Ye, J., Wen, F., Sobhani, H., Lassiter, J.B., Van Dorpe, P., Nordlander, P., Halas, N.J.: Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett. 12, 1660 (2012) · doi:10.1021/nl3000453
[20] Agarwal, G.S.: Quantum Optics. Cambridge University Press, Cambridge (2013) · Zbl 1269.81001
[21] Qu, K, Agarwal, G.S.: Fano resonances and their control in optomechanics. Phys. Rev. A 87, 063813 (2013) · doi:10.1103/PhysRevA.87.063813
[22] Ali Abbassi, M., Mehrany, K.: The impact of Fano resonance on enhancing the cooling of a levitated nanosphere in the resolved sideband regime. arXiv:1707.05823v1
[23] Huang, S: Double electromagnetically induced transparency and narrowing of probe absorption in a ring cavity with nanomechanical mirrors. J. Phys. B: At. Mol. Opt. Phys. 47, 055504 (2014) · doi:10.1088/0953-4075/47/5/055504
[24] Sohail, A., Zhang, Y., Usman, M., Yu, C.-S.: Controllable optomechanically induced transparency in coupled optomechanical systems. Eur. Phys. J. D 71, 103 (2017) · doi:10.1140/epjd/e2017-70588-9
[25] Sohail, A., Zhang, Y., Zhang, J, Yu, C.-S.: Optomechanically induced transparency in multi-cavity optomechanical system with and without one two-level atom. Sci. Rep. 6, 28830 (2016) · doi:10.1038/srep28830
[26] Hammerer, K., Srensen, A.S., Polzik, E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041 (2010) · doi:10.1103/RevModPhys.82.1041
[27] Islam R.U., Akram, M. , Saif, F.J.: Engineering maximally entangled N-photon NOON field states using an atom interferometer based on Bragg regime cavity QED. Phys. B: At. Mol. Opt. Phys. 40, 1359 (2007) · doi:10.1088/0953-4075/40/7/005
[28] Ian, H.; Gong, ZR; Liu, YX; Sun, CP; Nori, F., No article title, Phys. Rev. A, 78, 013824 (2008) · doi:10.1103/PhysRevA.78.013824
[29] Brennecke, F.; Ritter, S.; Donner, T.; Esslinger, T., No article title, Science, 322, 235 (2008) · doi:10.1126/science.1163218
[30] Ritsch, H. et al.: Cavity optomechanics with a Bose-Einstein condensate. Rev. Mod. Phys. 85, 553 (2013) · doi:10.1103/RevModPhys.85.553
[31] Tian, L., Zoller, P.: Coupled Ion-Nanomechanical systems. Phys. Rev. Lett. 93, 266403 (2004) · doi:10.1103/PhysRevLett.93.266403
[32] Yasir, K.A., Ayub, M., Saif, F.: Exponential localization of moving-end mirror in optomechanical system. J. Mod. Opt. 61, 1318 (2014) · doi:10.1080/09500340.2014.931476
[33] Han, Y., Cheng, J., Zhou, L.: Electromagnetically induced transparency in a cavity optomechanical system with an atomic medium. J. Phys. B 44, 165505 (2011) · doi:10.1088/0953-4075/44/16/165505
[34] Akram, M.J., Ghafoor, F., Saif, F.: Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics. J. Phys. B 48, 065502 (2015) · doi:10.1088/0953-4075/48/6/065502
[35] Pirkkalainen, JM, No article title, Nat. Comm., 6, 6981 (2014) · doi:10.1038/ncomms7981
[36] Wang, H., No article title, Phys. Rev. A, 90, 023817 (2014) · doi:10.1103/PhysRevA.90.023817
[37] Akram, M.J., Ghafoor, F., Khan, M.M., Saif, F.: Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity. Phys. Rev. A 95, 023810 (2017) · doi:10.1103/PhysRevA.95.023810
[38] Yasir, K.A., Liu, W.-M.: Controlled electromagnetically induced transparency and fano resonances in hybrid BEC-Optomechanics. Sci. Rep. 6, 22651 (2016) · doi:10.1038/srep22651
[39] Kiesel, N., Blaser, F., Deli, U., Grass, D., Kaltenbaek, R., Aspelmeyer, M.: Cavity cooling of an optically levitated submicron particle. Proc. Nat. Acad. Sci. 110, 14180 (2013) · doi:10.1073/pnas.1309167110
[40] Millen, J., Fonseca, P.Z.G., Mavrogordatos, T., Monteiro, T.S., Barker, P.F.: Cavity Cooling a single charged levitated nanosphere. Phys. Rev. Lett. 114, 123602 (2015) · doi:10.1103/PhysRevLett.114.123602
[41] Chang, D.E., Regal, C.A., Papp, S.B., Wilson, D.J., Ye, J., Painter, O., Kimble, H.J., Zoller P.: Cavity optomechanics using an optically levitated nanosphere. Proc. Nat. Acad. Sci. 107, 1005 (2010) · doi:10.1073/pnas.0912969107
[42] Romero-Isart, O., Pflanzer, A.C., Juan, M.L., Quidant, R., Kiesel, N., Aspelmeyer, M., Cirac, J.I.: Optically levitating dielectrics in the quantum regime: theory and protocols. Phys. Rev. A 83, 013803 (2011) · doi:10.1103/PhysRevA.83.013803
[43] Kaltenbaek, R., Hechenblaikner, G., Kiesel, N., RomeroIsart, O., Schwab, K., Johann, U., Aspelmeyer, M.: Macroscopic quantum resonators. Exp. Astron. 34, 123 (2012) · doi:10.1007/s10686-012-9292-3
[44] Arvanitaki, A., Geraci, A.A.: Detecting high-frequency gravitational waves with optically levitated sensors. Phys. Rev. Lett. 110, 071105 (2013) · doi:10.1103/PhysRevLett.110.071105
[45] Monteiro, T., Millen, J., Pender, G., Marquardt, F., Chang, D., Barker, P.: Dynamics of levitated nanospheres: towards the strong coupling regime. New J. Phys. 15, 015001 (2013) · doi:10.1088/1367-2630/15/1/015001
[46] Zhang, J.Q., Li, Y., Feng, M., Xu, Y.: Precision measurement of electrical charge with optomechanically induced transparency. Phys. Rev. A 86, 053806 (2012) · doi:10.1103/PhysRevA.86.053806
[47] Hensinger, W.K., Utami, D.W., Goan, H.S., Schwab, K., Monroe, C., Milburn, G.J.: ion trap transducers for quantum electromechanical oscillators. Phys. Rev. A 72(R), 041405 (2005) · doi:10.1103/PhysRevA.72.041405
[48] Nie, W., Chen, A., Lan, Y.: Optical-response properties in levitated optomechanical systems beyond the low-excitation limit. Phys. Rev. A 93, 023841 (2016) · doi:10.1103/PhysRevA.93.023841
[49] Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994) · Zbl 1138.81586 · doi:10.1007/978-3-642-79504-6
[50] Gröblacher, S., Hammerer, K., Vanner, M., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature (London) 460, 724 (2009) · doi:10.1038/nature08171
[51] Nie, W., Lan, Y., Li, Y.: Zhu S.:Dynamics of a levitated nanosphere by optomechanical coupling and Casimir interaction. Phys. Rev. A 88, 063849 (2013) · doi:10.1103/PhysRevA.88.063849
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.