×

On estimating the structure factor of a point process, with applications to hyperuniformity. (English) Zbl 1517.62022

Summary: Hyperuniformity is the study of stationary point processes with a sub-Poisson variance in a large window. In other words, counting the points of a hyperuniform point process that fall in a given large region yields a small-variance Monte Carlo estimation of the volume. Hyperuniform point processes have received a lot of attention in statistical physics, both for the investigation of natural organized structures and the synthesis of materials. Unfortunately, rigorously proving that a point process is hyperuniform is usually difficult. A common practice in statistical physics and chemistry is to use a few samples to estimate a spectral measure called the structure factor. Its decay around zero provides a diagnostic of hyperuniformity. Different applied fields use however different estimators, and important algorithmic choices proceed from each field’s lore. This paper provides a systematic survey and derivation of known or otherwise natural estimators of the structure factor. We also leverage the consistency of these estimators to contribute the first asymptotically valid statistical test of hyperuniformity. We benchmark all estimators and hyperuniformity diagnostics on a set of examples. In an effort to make investigations of the structure factor and hyperuniformity systematic and reproducible, we further provide the Python toolbox structure_factor, containing all the estimators and tools that we discuss.

MSC:

62-08 Computational methods for problems pertaining to statistics
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)

References:

[1] Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2009). ISBN 9780511801334. doi:10.1017/CBO9780511801334 · Zbl 1184.15023
[2] Baddeley, A., Rubak, E., Turner, R.: Spatial Point Patterns: Methodology and Applications with R. Chapman and Hall/CRC (2015). ISBN 9780429161704. doi:10.1201/B19708 · Zbl 1357.62001
[3] Baddour, N., Chouinard, U.: Theory and operational rules for the discrete Hankel transform. J.Opt. Soc. Am. A 32(4), 611 (2015). ISSN 1084-7529. doi:10.1364/JOSAA.32.000611
[4] Bardenet, R., Hardy, A.: Monte Carlo with determinantal point processes. Ann. Appl. Probab. 30(1), (2020). ISSN 1050-5164. doi:10.1214/19-AAP1504 · Zbl 1491.65007
[5] Bardenet, R., Ghosh, S., Lin, M.: Determinantal point processes based on orthogonal polynomials for sampling minibatches in SGD. In: Advances in Neural Information Processing Systems (NeurIPS) (2021)
[6] Bartlett, M.S.: The spectral analysis of two-dimensional point processes. Biometrika 51(3-4), 299-311 (1964). ISSN 0006-3444. doi:10.1093/biomet/51.3-4.299 · Zbl 0124.08601
[7] Beck, J.: Irregularities of distribution. I. Acta Math. 159, 1-49 (1987). ISSN 0001-5962. doi:10.1007/BF02392553 · Zbl 0631.10034
[8] Belhadji, A.; Bardenet, R.; Chainais, P., Kernel quadrature with DPPs, Adv. Neural Inf. Process. Syst. (NeurIPS), 32, 12927-12937 (2019)
[9] Belhadji, A., Bardenet, R., Chainais, P.: Kernel interpolation with continuous volume sampling. In: III, H.D., Singh, A., (eds.) International Conference on Machine Learning (ICML), Volume 119 of Proceedings of Machine Learning Research, pp. 725-735. PMLR (2020a)
[10] Belhadji, A.; Bardenet, R.; Chainais, P., A determinantal point process for column subset selection, J. Mach. Learn. Res., 21, 197, 1-62 (2020) · Zbl 1536.68029
[11] Biscio, C.A.N., Waagepetersen, R.: A general central limit theorem and a subsampling variance estimator for \(\alpha \)-mixing point processes. Scand. J. Stat. 46(4), 1168-1190 (2019). ISSN 0303-6898. doi:10.1111/sjos.12389 · Zbl 1453.60068
[12] Boursier, J.: Optimal local laws and CLT for 1D long-range Riesz gases (2021). ArXiv e-prints. doi:10.48550/arXiv.2112.05881
[13] Brémaud, P.: Fourier Analysis and Stochastic Processes. Springer, Cham (2014). ISBN 9780511801334. doi:10.1017/CBO9780511801334 · Zbl 1312.60002
[14] Chiu, S.N., Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and Its Applications. Wiley Series in Probability and Statistics. Wiley (2013). ISBN 9780470664810. doi:10.1002/9781118658222 · Zbl 1291.60005
[15] Coeurjolly, J-F; Mazoyer, A.; Amblard, P-O, Monte Carlo integration of non-differentiable functions on \([0,1]^\iota , \iota =1,\ldots , d\), using a single determinantal point pattern defined on \([0,1]^d\), Electron. J. Stat., 15, 2, 6228-6280 (2021) · Zbl 1483.60072 · doi:10.1214/21-EJS1929
[16] Coste, S.: Order, fluctuations, rigidities (2021)
[17] Daley, D., Vesilo, R.: Long range dependence of point processes, with queueing examples. Stoch. Process. Appl. 70(2), 265-282 (1997). ISSN 0304-4149. doi:10.1016/S0304-4149(97)00045-8 · Zbl 0911.60077
[18] Diggle, P.J., Gates, D.J., Stibbard, A.: A nonparametric estimator for pairwise-interaction point processes. Biometrika 74(4), 763-770 (1987). ISSN 0006-3444. doi:10.1093/BIOMET/74.4.763 · Zbl 0634.62037
[19] Guizar-Sicairos, M., Gutiérrez-Vega, J.C.: Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields. J. Opt. Soc. Am. A 21(1), 53 (2004). ISSN 1084-7529. doi:10.1364/JOSAA.21.000053
[20] Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes, vol. 51. American Mathematical Society (2009). ISBN 978-0-8218-4373-4 · Zbl 1190.60038
[21] Kailkhura, B.; Thiagarajan, JJ; Rastogi, C.; Varshney, PK; Bremer, P-T, A spectral approach for the design of experiments: design, analysis and algorithms, J. Mach. Learn. Res., 19, 34, 1-46 (2018) · Zbl 1466.62377
[22] Klatt, M.A., Lovrić, J., Chen, D., Kapfer, S.C., Schaller, F.M., Schönhöfer, P.W.A., Gardiner, B.S., Smith, A.-S., Schröder-Turk, G.E., Torquato, S.: Universal hidden order in amorphous cellular geometries. Nat. Commun. 10(1), 811 (2019). ISSN 2041-1723. doi:10.1038/s41467-019-08360-5
[23] Klatt, M.A., Last, G., Yogeshwaran, D.: Hyperuniform and rigid stable matchings. Random Struct. Algorithms 57(2), 439-473 (2020). ISSN 1042-9832. doi:10.1002/rsa.20923 · Zbl 1456.60121
[24] Landau, L.J.: Bessel functions: monotonicity and bounds. J. Lond. Math. Soc. 61(1), 197-215 (2000). ISSN 00246107. doi:10.1112/S0024610799008352 · Zbl 0948.33001
[25] Murray, S., Poulin, F.: hankel: a Python library for performing simple and accurate Hankel transformations. J. Open Source Softw. 4(37), 1397 (2019). ISSN 2475-9066. doi:10.21105/joss.01397
[26] Ogata, H.: A numerical integration formula based on the Bessel functions. Publ. Res. Inst. Math. Sci. 41(4), 949-970 (2005). ISSN 0034-5318. doi:10.2977/prims/1145474602 · Zbl 1104.65025
[27] Osgood, B.: Lecture Notes for EE 261 the Fourier Transform and Its Applications. CreateSpace Independent Publishing Platform (2014). ISBN 9781505614497
[28] Percival, D.B., Walden, A.T.: Spectral Analysis for Univariate Time Series, vol. 51. Cambridge University Press (2020). ISBN 9781139235723. doi:10.1017/9781139235723 · Zbl 1476.62003
[29] Pilleboue, A.; Singh, G.; Coeurjolly, D.; Kazhdan, M.; Ostromoukhov, V., Variance analysis for Monte Carlo integration, ACM Trans. Graph. (Proc. SIGGRAPH), 34, 4, 14 (2015) · Zbl 1334.68265 · doi:10.1145/2766930
[30] Rajala, T.A., Olhede, S.C., Murrell, D.J.: Spectral estimation for spatial point patterns (2020a). ArXiv e-prints (v1). doi:10.48550/arxiv.2009.01474
[31] Rajala, T.A., Olhede, S.C., Murrell, D.J.: What is the Fourier transform of a spatial point process? (2020b). ArXiv e-prints (v1). doi:10.48550/ARXIV.2009.01474. arXiv:2009.01474
[32] Rhee, C-H; Glynn, PW, Unbiased estimation with square root convergence for SDE models, Oper. Res., 63, 5, 1026-1043 (2015) · Zbl 1347.65016 · doi:10.1287/opre.2015.1404
[33] Riedel, K., Sidorenko, A.: Minimum bias multiple taper spectral estimation. IEEE Trans. Signal Process. 43(1), 188-195 (1995). ISSN 1053587X. doi:10.1109/78.365298
[34] Samorodnitsky, G.: Stochastic Processes and Long Range Dependence. Springer (2016) · Zbl 1376.60007
[35] Thomson, D.J.: Spectrum estimation and harmonic analysis. Proc. IEEE 70(9), 1055-1096 (1982). ISSN 0018-9219. doi:10.1109/PROC.1982.12433
[36] Torquato, S.: Hyperuniform states of matter. Phys. Rep. 745, 1-95 (2018). ISSN 03701573. doi:10.1016/j.physrep.2018.03.001 · Zbl 1392.82056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.