×

Anyonic chains, topological defects, and conformal field theory. (English) Zbl 1379.81070

Summary: Motivated by the three-dimensional topological field theory/two-dimensional conformal field theory (CFT) correspondence, we study a broad class of one-dimensional quantum mechanical models, known as anyonic chains, which can give rise to an enormously rich (and largely unexplored) space of two-dimensional critical theories in the thermodynamic limit. One remarkable feature of these systems is the appearance of non-local microscopic “topological symmetries” that descend to topological defects of the resulting CFTs. We derive various model-independent properties of these theories and of this topological symmetry/topological defect correspondence. For example, by studying precursors of certain twist and defect fields directly in the anyonic chains, we argue that (under mild assumptions) the two-dimensional CFTs correspond to particular modular invariants with respect to their maximal chiral algebras and that the topological defects descending from topological symmetries commute with these maximal chiral algebras. Using this map, we apply properties of defect Hilbert spaces to show how topological symmetries give a handle on the set of allowed relevant deformations of these theories. Throughout, we give a unified perspective that treats the constraints from discrete symmetries on the same footing as the constraints from topological ones.

MSC:

81T45 Topological field theories in quantum mechanics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T27 Continuum limits in quantum field theory
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81R25 Spinor and twistor methods applied to problems in quantum theory

References:

[1] Leinaas J.M., Myrheim J.: On the theory of identical particles. Il Nuovo Cimento B (1971-1996) 37, 1-23 (1977) · doi:10.1007/BF02727953
[2] Wilczek F.: Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957 (1982) · doi:10.1103/PhysRevLett.49.957
[3] Wang Z.: Topological Quantum Computation. American Mathematical Society, Providence, RI (2010) · Zbl 1239.81005 · doi:10.1090/cbms/112
[4] Moore G., Read N.: Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362 (1991) · doi:10.1016/0550-3213(91)90407-O
[5] Witten E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351 (1989) · Zbl 0667.57005 · doi:10.1007/BF01217730
[6] Moore G.W., Seiberg N.: Taming the conformal zoo. Phys. Lett. B 220, 422 (1989) · doi:10.1016/0370-2693(89)90897-6
[7] Moore, G.W., Seiberg, N.: Lectures on RCFT. In: 1989 Banff NATO ASI: Physics, Geometry and Topology Banff, Canada, August 14-25, 1989, pp. 1-129 (1989) · Zbl 0985.81739
[8] Feiguin A., Trebst S., Ludwig A.W.W., Troyer M., Kitaev A., Wang Z., Freedman M.H.: Interacting anyons in topological quantum liquids: the golden chain. Phys. Rev. Lett. 98, 160409. (2007) arXiv:cond-mat/0612341 · doi:10.1103/PhysRevLett.98.160409
[9] Gils C., Ardonne E., Trebst S., Huse D.A., Ludwig A.W., Troyer M., Wang Z.: Anyonic quantum spin chains: spin-1 generalizations and topological stability. Phys. Rev. B 87, 235120 (2013) · doi:10.1103/PhysRevB.87.235120
[10] Petkova V.B., Zuber J.B.: Generalized twisted partition functions. Phys. Lett. B 504, 157. (2001) arXiv:hep-th/0011021 · Zbl 0977.81128 · doi:10.1016/S0370-2693(01)00276-3
[11] Pfeifer R.N., Buerschaper O., Trebst S., Ludwig A.W., Troyer M., Vidal G.: Translation invariance, topology, and protection of criticality in chains of interacting anyons. Phys. Rev. B 86, 155111 (2012) · doi:10.1103/PhysRevB.86.155111
[12] Aasen D., Mong R.S.K., Fendley P.: Topological defects on the lattice I: the Ising model. J. Phys. A 49, 354001. (2016) arXiv:1601.07185 · Zbl 1353.82011 · doi:10.1088/1751-8113/49/35/354001
[13] Hauru M., Evenbly G., Ho W.W., Gaiotto D., Vidal G.: Topological conformal defects with tensor networks. Phys. Rev. B 94, 115125. (2016) arXiv:1512.03846 · doi:10.1103/PhysRevB.94.115125
[14] Aasen, D., Mong, R.S.K., Fendley, P.: To appear
[15] Ardonne E., Gukelberger J., Ludwig A.W., Trebst S., Troyer M.: Microscopic models of interacting Yang-Lee anyons. New J. Phys. 13, 045006 (2011) · Zbl 1448.81467 · doi:10.1088/1367-2630/13/4/045006
[16] Rowell E., Stong R., Wang Z.: On classification of modular tensor categories. Commun. Math. Phys. 292, 343-389 (2009) · Zbl 1186.18005 · doi:10.1007/s00220-009-0908-z
[17] Gils C., Ardonne E., Trebst S., Ludwig A.W., Troyer M., Wang Z.: Collective states of interacting anyons, edge states, and the nucleation of topological liquids. Phys. Rev. Lett. 103, 070401 (2009) · doi:10.1103/PhysRevLett.103.070401
[18] Trebst S., Troyer M., Wang Z., Ludwig A.W.: A short introduction to Fibonacci anyon models. Prog. Theor. Phys. Suppl. 176, 384-407 (2008) · Zbl 1173.81362 · doi:10.1143/PTPS.176.384
[19] Trebst S., Ardonne E., Feiguin A., Huse D.A., Ludwig A.W., Troyer M.: Collective states of interacting Fibonacci anyons. Phys. Rev. Lett. 101, 050401 (2008) · doi:10.1103/PhysRevLett.101.050401
[20] Fradkin E.: Field Theories of Condensed Matter Physics. Cambridge University Press, Cambridge (2013) · Zbl 1278.82001 · doi:10.1017/CBO9781139015509
[21] Fuchs J., Gaberdiel M.R., Runkel I., Schweigert C.: Topological defects for the free boson CFT. J. Phys. A 40, 11403. (2007) arXiv:0705.3129 · Zbl 1142.81363 · doi:10.1088/1751-8113/40/37/016
[22] Gaiotto D., Kapustin A., Seiberg N., Willett B.: Generalized global symmetries. JHEP 1502, 172. (2015) arXiv:1412.5148 · Zbl 1388.83656 · doi:10.1007/JHEP02(2015)172
[23] Haldane F.: Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153 (1983) · doi:10.1103/PhysRevLett.50.1153
[24] Affleck I., Haldane F.: Critical theory of quantum spin chains. Phys. Rev. B 36, 5291 (1989) · doi:10.1103/PhysRevB.36.5291
[25] Lieb E., Schultz T., Mattis D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407 (1961) · Zbl 0129.46401 · doi:10.1016/0003-4916(61)90115-4
[26] Majumdar C.K., Ghosh D.K.: On next-nearest-neighbor interaction in linear chain. II. J. Math. Phys. 10, 1399-1402 (1969) · doi:10.1063/1.1664979
[27] Furuya S.C., Oshikawa M.: Symmetry protection of critical phases and global anomaly in 1 + 1 dimensions. Phys. Rev. Lett. 118, 021601. (2015) arXiv:1503.07292 · doi:10.1103/PhysRevLett.118.021601
[28] Kitaev A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2-111 (2006) · Zbl 1125.82009 · doi:10.1016/j.aop.2005.10.005
[29] Verlinde E.P.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B 300, 360-376 (1988) · Zbl 1180.81120 · doi:10.1016/0550-3213(88)90603-7
[30] Pasquier V.: Operator content of the ADE lattice models. J. Phys. A Math. Gen. 20, 5707 (1987) · doi:10.1088/0305-4470/20/16/043
[31] Recknagel A., Schomerus V.: Boundary Conformal Field Theory and the Worldsheet Approach to D-Branes. Cambridge University Press, Cambridge (2013) · Zbl 1332.81005 · doi:10.1017/CBO9780511806476
[32] Alday L.F., Gaiotto D., Gukov S., Tachikawa Y., Verlinde H.: Loop and surface operators in \[{{\mathcal{N}}=2}N=2\] gauge theory and Liouville modular geometry. JHEP 1001, 113. (2010) arXiv:0909.0945 · Zbl 1269.81078 · doi:10.1007/JHEP01(2010)113
[33] Drukker N., Gaiotto D., Gomis J.: The virtue of defects in 4D gauge theories and 2D CFTs. JHEP 1106, 25. (2011) arXiv:1003.1112 · Zbl 1298.81170 · doi:10.1007/JHEP06(2011)025
[34] Runkel I.: Non-local conserved charges from defects in perturbed conformal field theory. J. Phys. A Math. Theor. 43, 365206. (2010) arXiv:1004.1909 · Zbl 1196.81206 · doi:10.1088/1751-8113/43/36/365206
[35] Di Francesco P., Mathieu P., Senechal D.: Conformal Field Theory. Springer, New York (1997) · Zbl 0869.53052 · doi:10.1007/978-1-4612-2256-9
[36] Fuchs J., Schweigert C., Stigner C.: The classifying algebra for defects. Nucl. Phys. B 843, 673-723. (2011) arXiv:1007.0401 · Zbl 1207.81142 · doi:10.1016/j.nuclphysb.2010.10.008
[37] Frohlich J., Fuchs J., Runkel I., Schweigert C.: Duality and defects in rational conformal field theory. Nucl. Phys. B 763, 354-430. (2007) arXiv:hep-th/0607247 · Zbl 1116.81060 · doi:10.1016/j.nuclphysb.2006.11.017
[38] Beigi S., Shor P.W., Whalen D.: The quantum double model with boundary: condensations and symmetries. Commun. Math. Phys. 306, 663-694 (2011) · Zbl 1229.81120 · doi:10.1007/s00220-011-1294-x
[39] Liu Z.: Exchange relation planar algebras of small rank. Trans. Am. Math. Soc. 368, 8303-8348 (2016) · Zbl 1365.46053 · doi:10.1090/tran/6582
[40] Jiang C., Liu Z., Wu J.: Noncommutative uncertainty principles. J. Funct. Anal. 270, 264-311 (2016) · Zbl 1352.46062 · doi:10.1016/j.jfa.2015.08.007
[41] Aasen, D., Buican, M., Gromov, A.: To appear
[42] Gepner D., Witten E.: String theory on group manifolds. Nucl. Phys. B 278, 493-549 (1986) · doi:10.1016/0550-3213(86)90051-9
[43] Iles N.J., Watts G.M.T.: Characters of the W3 algebra. JHEP 1402, 9. (2014) arXiv:1307.3771 · Zbl 1333.83191 · doi:10.1007/JHEP02(2014)009
[44] Bakas, I., Kiritsis, E.: Bosonic realization of a universal W-algebra and \[{Z_\infty}\] Z∞ parafermions. Nucl. Phys. B 343, 185 (1990), [Erratum: Nucl. Phys. B 350, 512 (1991)]
[45] Runkel I., Watts G.M.T.: A nonrational CFT with c = 1 as a limit of minimal models. JHEP 0109, 006. (2001) arXiv:hep-th/0107118 · doi:10.1088/1126-6708/2001/09/006
[46] Izumi M.: The structure of sectors associated with Longo-Rehren inclusions II: examples. Rev. Math. Phys. 13, 603-674 (2001) · Zbl 1033.46506 · doi:10.1142/S0129055X01000818
[47] Evans D.E., Gannon T.: The exoticness and realisability of twisted Haagerup-Izumi modular data. Commun. Math. Phys. 307, 463-512. (2011) arXiv:1006.1326 · Zbl 1236.46055 · doi:10.1007/s00220-011-1329-3
[48] Gannon, T., Morrison, S.: Modular data for the extended Haagerup subfactor. arXiv:1606.07165 · Zbl 1431.46044
[49] Kormos M., Runkel I., Watts G.M.T.: Defect flows in minimal models. JHEP 0911, 057. (2009) arXiv:0907.1497 · doi:10.1088/1126-6708/2009/11/057
[50] Gaiotto D.: Domain walls for two-dimensional renormalization group flows. JHEP 1212, 103. (2012) arXiv:1201.0767 · Zbl 1397.81180 · doi:10.1007/JHEP12(2012)103
[51] Barkeshli M., Jian C.-M., Qi X.-L.: Theory of defects in Abelian topological states. Phys. Rev. B 88, 235103 (2013) · doi:10.1103/PhysRevB.88.235103
[52] Teo J.C., Hughes T.L., Fradkin E.: Theory of twist liquids: gauging an anyonic symmetry. Ann. Phys. 360, 349-445 (2015) · Zbl 1360.81242 · doi:10.1016/j.aop.2015.05.012
[53] Gromov A.: Geometric defects in quantum Hall states. Phys. Rev. B 94, 085116. (2016) arXiv:1604.03988 · doi:10.1103/PhysRevB.94.085116
[54] Buican M.: A conjectured bound on accidental symmetries. Phys. Rev. D 85, 025020. (2012) arXiv:1109.3279 · doi:10.1103/PhysRevD.85.025020
[55] Gukov S.: Counting RG flows. JHEP 1601, 020. (2016) arXiv:1503.01474 · Zbl 1388.81667 · doi:10.1007/JHEP01(2016)020
[56] Vernier E., Jacobsen J.L., Saleur H.: Elaborating the phase diagram of spin-1 anyonic chains. SciPost Phys. 2, 004. (2016) arXiv:1611.02236 · doi:10.21468/SciPostPhys.2.1.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.