×

Loops in \(\mathrm{SU}(2)\), Riemann surfaces, and factorization. I. (English) Zbl 1337.22012

The paper under review extends the previous work of the second named author [J. Funct. Anal. 260, No. 8, 2191–2221 (2011; Zbl 1217.22019)], where it was proved that a loop \(g: S^1\to\mathrm{SU}(2)\) has a triangular factorization if and only if \(g\) has a root subgroup factorization. Generalizations are obtained in the present paper, when the unit disk and the sphere (double of the disk) are replaced by a based compact Riemann surface and its double respectively. The authors show that a \(mathrm{SU}(2)\) valued multiloop having an analogue of a root subgroup factorization, viewed as a transition function, defines a semistable holomorphic \(\mathrm{SL}(2,\mathbb{C})\) bundle. The authors use the ideas of generalized Fourier-Laurent expansions developed by I. M. Krichever and S. P. Novikov [J. Geom. Phys. 5, No. 4, 631–661 (1988; Zbl 0707.17015)] to obtain a linear triangular factorization. They present some calculations of determinants for spin Toeplitz operators in the scalar case. They also announce that a number of explicit calculations for elliptic and hyperelliptic surfaces will appear in the second part of the paper.

MSC:

22E67 Loop groups and related constructions, group-theoretic treatment
47A68 Factorization theory (including Wiener-Hopf and spectral factorizations) of linear operators
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators

References:

[1] Basor, E. and Pickrell, D., Loops in \({\rm SU}(2)\), Riemann surfaces, and factorization, II: Examples, (None)
[2] Bott, Raoul, Stable bundles revisited, Surveys in Differential Geometry ({C}ambridge, {MA}, 1990), 1-18, (1991), Lehigh University, Bethlehem, PA · Zbl 0757.32013
[3] B{\"o}ttcher, Albrecht and Silbermann, Bernd, Analysis of {T}oeplitz operators, 512, (1990), Springer-Verlag, Berlin · Zbl 0732.47029 · doi:10.1007/978-3-662-02652-6
[4] Clancey, Kevin F. and Gohberg, Israel, Factorization of matrix functions and singular integral operators, Operator Theory: Advances and Applications, 3, x+234, (1981), Birkh\"auser Verlag, Basel – Boston, Mass. · Zbl 0474.47023 · doi:10.1007/978-3-0348-5492-4
[5] Gohberg, Israel and Krupnik, Naum, Einf\"uhrung in die {T}heorie der eindimensionalen singul\"aren {I}ntegraloperatoren, Mathematische Reihe, 63, 379, (1979), Birkh\"auser Verlag, Basel – Boston, Mass. · Zbl 0413.47040 · doi:10.1007/978-3-0348-5555-6
[6] Griffiths, Phillip and Harris, Joseph, Principles of algebraic geometry, Pure and Applied Mathematics, xii+813, (1978), John Wiley & Sons, New York · Zbl 0836.14001
[7] Grothendieck, A., Sur la classification des fibr\'es holomorphes sur la sph\`ere de {R}iemann, American Journal of Mathematics, 79, 121-138, (1957) · Zbl 0079.17001 · doi:10.2307/2372388
[8] Helton, J. William and Howe, Roger E., Integral operators: commutators, traces, index and homology, Proceedings of a {C}onference {O}perator {T}heory ({D}alhousie {U}niv., {H}alifax, {N}.{S}., 1973), Lecture Notes in Math., 345, 141-209, (1973), Springer, Berlin · Zbl 0268.47054
[9] Hawley, N. S. and Schiffer, M., Half-order differentials on Riemann surfaces, Acta Mathematica, 115, 1, 199-236, (1966) · Zbl 0136.06701 · doi:10.1007/BF02392208
[10] Helgason, Sigurdur, Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Pure and Applied Mathematics, 113, xix+654, (1984), Academic Press, Inc., Orlando, FL · Zbl 0543.58001
[11] Krichever, Igor Moiseevich and Novikov, S. P., Virasoro–{G}elfand–{F}uks type algebras, Riemann surfaces, operator’s theory of closed strings, Journal of Geometry and Physics, 5, 4, 631-661, (1989) · Zbl 0707.17015 · doi:10.1016/0393-0440(88)90023-X
[12] Peller, Vladimir V., Hankel operators and their applications, Springer Monographs in Mathematics, xvi+784, (2003), Springer-Verlag, New York · Zbl 1030.47002 · doi:10.1007/978-0-387-21681-2
[13] Pickrell, Doug, Invariant measures for unitary forms of {K}ac–{M}oody groups, Memoirs of the American Mathematical Society, 146, 693, 144 pages, (2000) · Zbl 0960.43001 · doi:10.1090/memo/0693
[14] Pickrell, Doug, Homogeneous {P}oisson structures on loop spaces of symmetric spaces, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 4, 069, 33 pages, (2008) · Zbl 1167.22014 · doi:10.3842/SIGMA.2008.069
[15] Pickrell, Doug, Loops in {\({\rm SU}(2)\)} and factorization, Journal of Functional Analysis, 260, 8, 2191-2221, (2011) · Zbl 1217.22019 · doi:10.1016/j.jfa.2011.01.001
[16] Pressley, Andrew and Segal, Graeme, Loop groups, Oxford Mathematical Monographs, viii+318, (1986), The Clarendon Press, Oxford University Press, New York · Zbl 0638.22009
[17] Ramanathan, A., Stable principal bundles on a compact {R}iemann surface, Mathematische Annalen, 213, 129-152, (1975) · Zbl 0284.32019 · doi:10.1007/BF01343949
[18] Rodin, Yu. L., The {R}iemann boundary value problem on closed {R}iemann surfaces and integrable systems, Physica D. Nonlinear Phenomena, 24, 1-3, 1-53, (1987) · Zbl 0605.30043 · doi:10.1016/0167-2789(87)90065-0
[19] Sato, Mikio, Theory of hyperfunctions. {I}, Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics, 8, 139-193, (1959) · Zbl 0087.31402
[20] Segal, G., The definition of conformal field theory, Topology, Geometry and Quantum Field Theory, London Mathematical Society Lecture Note Series, 308, 421-577, (2004), Cambridge University Press, Cambridge · Zbl 1372.81138 · doi:10.1017/CBO9780511526398
[21] Widom, Harold, Asymptotic behavior of block {T}oeplitz matrices and determinants. {II}, Advances in Mathematics, 21, 1, 1-29, (1976) · Zbl 0344.47016 · doi:10.1016/0001-8708(76)90113-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.