×

Dirichlet process mixture models for unsupervised clustering of symptoms in Parkinson’s disease. (English) Zbl 1514.62279

Summary: In this paper, the goal of identifying disease subgroups based on differences in observed symptom profile is considered. Commonly referred to as phenotype identification, solutions to this task often involve the application of unsupervised clustering techniques. In this paper, we investigate the application of a Dirichlet process mixture model for this task. This model is defined by the placement of the Dirichlet process on the unknown components of a mixture model, allowing for the expression of uncertainty about the partitioning of observed data into homogeneous subgroups. To exemplify this approach, an application to phenotype identification in Parkinson’s disease is considered, with symptom profiles collected using the Unified Parkinson’s Disease Rating Scale.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62F15 Bayesian inference
62H30 Classification and discrimination; cluster analysis (statistical aspects)

Software:

AS 136; BayesDA

References:

[1] Antoniak, C. E. 1974. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Stat., 2: 1152-1174. · Zbl 0335.60034 · doi:10.1214/aos/1176342871
[2] Binder, D. A. 1978. Bayesian cluster analysis. Biometrika, 65: 31-38. · Zbl 0376.62007 · doi:10.1093/biomet/65.1.31
[3] Blackwell, D. 1973. Discreteness of Ferguson selections. Ann. Stat., 1: 356-358. · Zbl 0276.62009 · doi:10.1214/aos/1176342373
[4] Blackwell, D. and MacQueen, J. B. 1973. Ferguson distributions via Pólya urn schemes. Ann. Stat., 1: 353-355. · Zbl 0276.62010 · doi:10.1214/aos/1176342372
[5] Blei, D. M. and Jordan, M. I. 2006. Variational inference for Dirichlet process mixtures. Bayesian Anal., 1: 121-144. · Zbl 1331.62259 · doi:10.1214/06-BA104
[6] Celeux, G., Hurn, M. and Robert, C. P. 2000. Computational and inferential difficulties with mixture posterior distributions. J. Am. Statist. Assoc., 95: 957-970. · Zbl 0999.62020
[7] Chen, C., Keith, J. M., Nyholt, D. R., Martin, N. G. and Mengersen, K. L. 2009. Bayesian latent trait modeling of migraine symptom data. Hum. Genet., 126: 277-288. · doi:10.1007/s00439-009-0671-4
[8] Dahl, D. B. 2006. Model-based clustering for expression data via a Dirichlet process mixture model, in Bayesian Inference for Gene Expression and Proteomics, : 201-218. Cambridge University Press. Cambridge
[9] Davidson, J. E., Irizarry, M. C., Bray, B. C., Wetten, S., Galwey, N., Gibson, R., Borrie, M., Delisle, R., Feldman, H. H., Hsiung, G. Y., Fornazzari, L., Gauthier, S., Guzman, D., Loy-English, I., Keren, R., Kertesz, A., George-Hyslop, P. St., Wherrett, J. and Monsch, A. U. 2010. An exploration of cognitive subgroups in Alzheimer’s disease. J. Int. Neuropsychol. Soc., 16: 233-243. · doi:10.1017/S1355617709991160
[10] Escobar, M. D. 1994. Estimating normal means with a Dirichlet process prior. J. Am. Statist. Assoc., 89: 268-277. · Zbl 0791.62039
[11] Escobar, M. D. and West, M. 1995. Bayesian density estimation and inference using mixtures. J. Am. Statist. Assoc., 90: 577-588. · Zbl 0826.62021
[12] Ferguson, T. S. 1973. A Bayesian analysis of some nonparametric problems. Ann. Stat., 1: 209-230. · Zbl 0255.62037 · doi:10.1214/aos/1176342360
[13] Foltynie, T., Brayne, C. and Barker, R. A. 2002. The heterogeneity of idiopathic Parkinson’s disease. J. Neurol., 249: 138-145. · doi:10.1007/PL00007856
[14] Fritsch, A. and Ickstadt, K. 2009. Improved criteria for clustering based on the posterior similarity matrix. Bayesian Anal., 4: 367-392. · Zbl 1330.62249 · doi:10.1214/09-BA414
[15] Frühwirth-Schnatter, S. 2001. Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models. J. Am. Statist. Assoc., 96: 194-209. · Zbl 1015.62022
[16] Frühwirth-Schnatter, S. 2006. Finite Mixture and Markov Switching Models, New York: Springer Verlag. · Zbl 1108.62002
[17] Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. 2004. Bayesian Data Analysis, 2, Boca Raton: Chapman and Hall/CRC. · Zbl 1039.62018
[18] George, E. I. and McCulloch, R. E. 1993. Variable selection via Gibbs sampling. J. Am. Statist. Assoc., 88: 881-889.
[19] Green, P. J. and Richardson, S. 2001. Modelling heterogeneity with and without the Dirichlet process. Scand. J. Stat., 2: 355-375. · Zbl 0973.62031 · doi:10.1111/1467-9469.00242
[20] Hartigan, J. A. and Wong, M. A. 1979. A k-means clustering algorithm. J. R. Statist. Soc. Ser. C, 28: 100-108. · Zbl 0447.62062 · doi:10.2307/2346830
[21] Ishwaran, H. and James, L. F. 2001. Gibbs sampling methods for stick-breaking priors. J. Am. Statist. Assoc., 96: 161-173. · Zbl 1014.62006
[22] Ishwaran, H. and James, L. F. 2002. Approximate Dirichlet process computing in finite normal mixtures: Smoothing and prior information. J. Comput. Graph. Stat., 11: 508-532.
[23] Ishwaran, H. and Zarepour, M. 2000. Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models. Biometrika, 87: 371-390. · Zbl 0949.62037 · doi:10.1093/biomet/87.2.371
[24] Jain, A. K., Murty, M. N. and Flynn, P. J. 1999. Data clustering: A review. ACM Comput. Surveys (CSUR), 31: 264-323. · doi:10.1145/331499.331504
[25] Jain, S. and Neal, R. M. 2004. A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. J. Comput. Graph. Stat., 13: 158-182.
[26] Jain, S. and Neal, R. M. 2007. Splitting and merging components of a nonconjugate Dirichlet process mixture model. Bayesian Anal., 2: 445-472. · Zbl 1331.62145 · doi:10.1214/07-BA219
[27] Johnson, S. C. 1967. Hierarchical clustering schemes. Psychometrika, 32: 241-254. · Zbl 1367.62191 · doi:10.1007/BF02289588
[28] Kalli, M., Griffin, J. E. and Walker, S. G. 2011. Slice sampling mixture models. Stat. Comput., 21: 93-105. · Zbl 1256.65006 · doi:10.1007/s11222-009-9150-y
[29] Kendler, K. S., Karkowski, L. M. and Walsh, D. 1998. The structure of psychosis: Latent class analysis of probands from the Roscommon family study. Arch. Gen. Psychiatry, 55: 492-509. · doi:10.1001/archpsyc.55.6.492
[30] Kim, S., Tadesse, M. G. and Vannucci, M. 2006. Variable selection in clustering via Dirichlet process mixture models. Biometrika, 93: 877-893. · Zbl 1436.62266 · doi:10.1093/biomet/93.4.877
[31] Lau, J. W. and Green, P. J. 2007. Bayesian model-based clustering procedures. J. Comput. Graph. Stat., 16: 526-558.
[32] Leask, S., Vermunt, J., Done, D., Crow, T., Blows, M. and Boks, M. 2009. Beyond symptom dimensions: Schizophrenia risk factors for patient groups derived by latent class analysis. Schizophr. Res., 115: 346-350. · doi:10.1016/j.schres.2009.09.017
[33] Lewis, S., Foltynie, T., Blackwell, A., Robbins, T., Owen, A. and Barker, R. 2005. Heterogeneity of Parkinson’s disease in the early clinical stages using a data-driven approach. J. Neurol. Neurosurg. Psychiatry, 76: 343-348. · doi:10.1136/jnnp.2003.033530
[34] Lijoi, A., Mena, R. H. and Prünster, I. 2007. Controlling the reinforcement in Bayesian non-parametric mixture models. J. R. Statist. Soc. Ser. B (Statist. Methodol.), 69: 715-740. · Zbl 07555373 · doi:10.1111/j.1467-9868.2007.00609.x
[35] Lijoi, A. and Prünster, I. 2010. “Models beyond the Dirichlet process”. In Bayesian Nonparametrics, Edited by: Hjort, N., Holmes, C., Müller, P. and Walker, S. 80-136. Cambridge: Cambridge University Press. · doi:10.1017/CBO9780511802478.004
[36] MacEachern, S. N. 1994. Estimating normal means with a conjugate style Dirichlet process prior. Comm. Stat. Simul. Comput., 23: 727-741. · Zbl 0825.62053
[37] MacEachern, S. N. and Müller, P. 1998. Estimating mixture of Dirichlet process models. J. Comput. Graph. Stat., 7: 223-238.
[38] Marin, J. M., Mengersen, K. L. and Robert, C. P. 2005. Bayesian modelling and inference on mixtures of distributions. Handbook of Stat., 25: 459-507. · doi:10.1016/S0169-7161(05)25016-2
[39] McLachlan, G. and Peel, D. 2000. Finite Mixture Models, New York: Wiley. · Zbl 0963.62061 · doi:10.1002/0471721182
[40] Medvedovic, M. and Sivaganesan, S. 2002. Bayesian infinite mixture model based clustering of gene expression profiles. Bioinformatics, 18: 1194-1206. · doi:10.1093/bioinformatics/18.9.1194
[41] Neal, R. M. 2000. Markov Chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Stat., 9: 249-265.
[42] Neal, R. M. 2003. Slice sampling. Ann. Stat., 31: 705-741. · Zbl 1051.65007 · doi:10.1214/aos/1056562461
[43] Nyholt, D. R., Gillespie, N. G., Heath, A. C., Merikangas, K. R., Duffy, D. L. and Martin, N. G. 2004. Latent class and genetic analysis does not support migraine with aura and migraine without aura as separate entities. Genet. Epidemiol., 26: 231-244. · doi:10.1002/gepi.10311
[44] Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. 2003. The Unified Parkinson’s Disease Rating Scale (UPDRS): Status and recommendations. Mov. Disord., 18: 738-750. · doi:10.1002/mds.10473
[45] Reijnders, J., Ehrt, U., Lousberg, R., Aarsland, D. and Leentjens, A. 2009. The association between motor subtypes and psychopathology in Parkinson’s disease. Parkinsonism Relat. Disord., 15: 379-382. · doi:10.1016/j.parkreldis.2008.09.003
[46] van Rooden, S. M., Colas, F., Martínez-Martín, P., Visser, M., Verbaan, D., Marinus, J., Chaudhuri, R. K., Kok, J. N. and van Hilten, J. J. 2011. Clinical subtypes of Parkinson’s disease. Mov. Disord., 29: 51-58. · doi:10.1002/mds.23346
[47] van Rooden, S. M., Heiser, W. J., Kok, J. N., Verbaan, D., van Hilten, J. J. and Marinus, J. 2010. The identification of Parkinson’s disease subtypes using cluster analysis: A systematic review. Mov. Disord., 25: 969-978. · doi:10.1002/mds.23116
[48] van Rooden, S. M., Visser, M., Verbaan, D., Marinus, J. and van Hilten, J. J. 2009. Motor patterns in Parkinson’s disease: A data-driven approach. Mov. Disord., 24: 1042-1047. · doi:10.1002/mds.22512
[49] Schiess, M. C., Zheng, H., Soukup, V. M., Bonnen, J. G. and Nauta, H. J. 2000. Parkinson’s disease subtypes: Clinical classification and ventricular cerebrospinal fluid analysis. Parkinsonism Relat. Disord., 6: 69-76. · doi:10.1016/S1353-8020(99)00051-6
[50] Sethuraman, J. 1994. A constructive definition of Dirichlet priors. Statist. Sinica, 4: 639-650. · Zbl 0823.62007
[51] Spycher, B., Silverman, M., Brooke, A., Minder, C. and Kuehni, C. 2008. Distinguishing phenotypes of childhood wheeze and cough using latent class analysis. Eur. Respir. J., 31: 974-981. · doi:10.1183/09031936.00153507
[52] Stephens, M. 2000. Dealing with label switching in mixture models. J. R. Statist. Soc. Ser. B, 62: 795-809. · Zbl 0957.62020 · doi:10.1111/1467-9868.00265
[53] Sutherland, G. T., Halliday, G. M., Silburn, P. A., Mastaglia, F. L., Rowe, D. B., Boyle, R. S., O’Sullivan, J. D., Ly, T., Wilton, S. D. and Mellick, G. D. 2009. Do polymorphisms in the familial Parkinsonism genes contribute to risk for sporadic Parkinson’s disease?. Mov. Disord., 24: 833-838. · doi:10.1002/mds.22214
[54] Tanner, C. M. and Goldman, S. M. 1996. Epidemiology of Parkinson’s disease. Neurol. Clin., 14: 317-335. · doi:10.1016/S0733-8619(05)70259-0
[55] Wade, S., Mongelluzzo, S. and Petrone, S. 2011. An enriched conjugate prior for Bayesian nonparametric inference. Bayesian Anal., 6: 359-386. · Zbl 1330.62219 · doi:10.1214/11-BA614
[56] Walker, S. G. 2007. Sampling the Dirichlet mixture model with slices. Comm. Stat. Simul. Comput., 36: 45-54. · Zbl 1113.62058
[57] Walsh, C. D. 2006. Latent class analysis identification of syndromes in Alzheimer’s disease: A Bayesian approach. Metodoloski Zvezki: Adv. Methodol. Stat., 3: 147-162.
[58] West, M. 1992. Hyperparameter estimation in Dirichlet process mixture models. ISDS Discussion Paper 92-A03, Duke University, Durham
[59] West, M., Müller, P. and Escobar, M. D. 1994. Hierarchical priors and mixture models, with application in regression and density estimation, in Aspects of Uncertainty: A Tribute to D.V. Lindley, Edited by: Smith, A. F.M. and Freeman, P. 363-386. Chichester: Wiley. · Zbl 0842.62001
[60] N. White, H. Johnson, P. Silburn, G. Mellick, N. Dissanayaka, and K. Mengersen, Probabilistic subgroup identification using Bayesian finite mixture modelling: A case study in Parkinson’s disease phenotype identification, preprint (2010), to appear in Statist. Methods Med. Res., doi: 10.1177/0962280210391012.
[61] Wong, M. A. and Lane, T. 1983. A kth nearest neighbour clustering procedure. J. R. Statist. Soc. Ser. B, 45: 362-368. · Zbl 0535.62055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.