×

Sensitivity of rough differential equations: an approach through the omega lemma. (English) Zbl 1423.60088

The authors here mainly rely on the notion of controlled rough path of M. Gubinelli [J. Funct. Anal. 216, No. 1, 86–140 (2004; Zbl 1058.60037)]. They consider the differentiability properties, understood as Fréchet differentiability, of the Ito map under minimal regularity conditions on the vector field. They extend the current results by proving Holder continuity of the Itô map and this generalizes to \(2 \leq p <3\) the results of X.-D. Li and T. J. Lyons [Ann. Sci. Éc. Norm. Supér. (4) 39, No. 4, 649–677 (2006; Zbl 1127.60033)].

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H07 Stochastic calculus of variations and the Malliavin calculus
60H05 Stochastic integrals

References:

[1] Abraham, R.; Marsden, J. E.; Ratiu, T., (Manifolds, Tensor Analysis, and Applications. Manifolds, Tensor Analysis, and Applications, Applied Mathematical Sciences (1988), Springer-Verlag) · Zbl 0875.58002
[2] Albrecht, F.; Diamond, H. G., A converse of Taylor’s theorem, Indiana Univ. Math. J., 21, 347-350 (1971/72) · Zbl 0212.14502
[3] Bailleul, I., Flows driven by rough paths, Rev. Mat. Iberoam., 31, 3, 901-934 (2015) · Zbl 1352.34089
[4] Bailleul, I., Regularity of the Itô-Lyons map, Confluentes Math., 7, 1, 3-11 (2015) · Zbl 1333.60156
[5] Bailleul, I.; Riedel, S., Rough flows (2015) · Zbl 1382.37050
[6] Baudoin, Fabrice; Coutin, Laure, Self-similarity and fractional Brownian motions on Lie groups, Electron. J. Probab., 13, Article 38 pp. (2008), 1120-1139 · Zbl 1189.60083
[7] Baudoin, F.; Hairer, M., A version of Hörmander’s theorem for the fractional Brownian motion, Probab. Theory Related Fields, 139, 3-4, 373-395 (2007) · Zbl 1123.60038
[8] Baudoin, F.; Ouyang, C., Gradient bounds for solutions of stochastic differential equations driven by fractional Brownian motions, (Malliavin Calculus and Stochastic Analysis. Malliavin Calculus and Stochastic Analysis, Springer Proc. Math. Stat., vol. 34 (2013), Springer: Springer New York), 413-426 · Zbl 1281.60053
[9] Baudoin, F.; Ouyang, C.; Tindel, S., Upper bounds for the density of solutions to stochastic differential equations driven by fractional Brownian motions, Ann. Inst. Henri Poincaré Probab. Stat., 50, 1, 111-135 (2014) · Zbl 1286.60051
[10] Baudoin, F.; Zhang, X., Taylor expansion for the solution of a stochastic differential equation driven by fractional Brownian motions, Electron. J. Probab., 17, Article 51 pp. (2012), 21pp · Zbl 1252.60052
[11] Besalú, M.; Nualart, D., Estimates for the solution to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter \(H \in(\frac{1}{3}, \frac{1}{2})\), Stoch. Dyn., 11, 2-3, 243-263 (2011) · Zbl 1231.60049
[12] Cass, T.; Friz, P., Densities for rough differential equations under Hörmander’s condition, Ann. of Math. (2), 171, 3, 2115-2141 (2010) · Zbl 1205.60105
[13] Cass, T.; Friz, P.; Victoir, N., Non-degeneracy of Wiener functionals arising from rough differential equations, Trans. Amer. Math. Soc., 361, 6, 3359-3371 (2009) · Zbl 1175.60034
[14] Cass, T.; Litterer, C.; Lyons, T., Integrability and tail estimates for Gaussian rough differential equations, Ann. Probab., 41, 4, 3026-3050 (2013) · Zbl 1278.60091
[15] Chronopoulou, A.; Tindel, S., On inference for fractional differential equations, Stat. Inference Stoch. Process., 16, 1, 29-61 (2013) · Zbl 1271.62197
[16] Coutin, L., Rough paths via sewing lemma, ESAIM Probab. Stat., 16, 479-526 (2012) · Zbl 1277.47081
[17] Coutin, L.; Lejay, A., Perturbed linear rough differential equations, Ann. Math. Blaise Pascal, 21, 1, 103-150 (2014) · Zbl 1322.60084
[18] Decreusefond, L.; Nualart, D., Flow properties of differential equations driven by fractional Brownian motion, (Stochastic Differential Equations: Theory and Applications. Stochastic Differential Equations: Theory and Applications, Interdiscip. Math. Sci., vol. 2 (2007), World Sci. Publ.: World Sci. Publ. Hackensack, NJ), 249-262 · Zbl 1135.60034
[19] Deya, A.; Tindel, S., Malliavin calculus for fractional heat equation, (Malliavin Calculus and Stochastic Analysis. Malliavin Calculus and Stochastic Analysis, Springer Proc. Math. Stat., vol. 34 (2013), Springer: Springer New York), 361-384 · Zbl 1274.60218
[20] Feng, Q.; Zhang, X., Taylor expansions and Castell estimates for solutions of stochastic differential equations driven by rough paths (2012-09)
[21] Feyel, D.; de La Pradelle, A.; Mokobodzki, G., A non-commutative sewing lemma, Electron. Commun. Probab., 13, 24-34 (2008) · Zbl 1186.26009
[22] Friz, P. K.; Hairer, M., A Course on Rough Paths (2014), Springer-Verlag · Zbl 1327.60013
[23] Friz, P.; Riedel, S., Integrability of (non-)linear rough differential equations and integrals, Stoch. Anal. Appl., 31, 2, 336-358 (2013) · Zbl 1274.60173
[24] Friz, P.; Victoir, N., Multidimensional Stochastic Processes as Rough Paths. Theory and Applications (2010), Cambridge University Press · Zbl 1193.60053
[25] Gobet, E.; Munos, R., Sensitivity analysis using Itô-Malliavin calculus and martingales, and application to stochastic optimal control, SIAM J. Control Optim., 43, 5, 1676-1713 (2005) · Zbl 1116.60033
[26] Gubinelli, M., Controlling rough paths, J. Funct. Anal., 216, 86-140 (2004) · Zbl 1058.60037
[27] Hairer, M.; Pillai, N. S., Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion, Ann. Inst. Henri Poincaré Probab. Stat., 47, 2, 601-628 (2011) · Zbl 1221.60083
[28] Hu, Y.; Tindel, S., Smooth density for some nilpotent rough differential equations, J. Theoret. Probab., 26, 3, 722-749 (2013) · Zbl 1277.60101
[29] Inahama, Y., Malliavin differentiability of solutions of rough differential equations, J. Funct. Anal., 267, 5, 1566-1584 (2014) · Zbl 1296.60142
[30] Inahama, Y., Laplace approximation for rough differential equation driven by fractional Brownian motion, Ann. Probab., 41, 1, 170-205 (2013) · Zbl 1273.60043
[31] Inahama, Y., A moment estimate of the derivative process in rough path theory, Proc. Amer. Math. Soc., 140, 6, 2183-2191 (2012) · Zbl 1241.60026
[32] Inahama, Y., A stochastic Taylor-like expansion in the rough path theory, J. Theoret. Probab., 23, 3, 671-714 (2010) · Zbl 1203.60073
[33] Inahama, Y.; Kawabi, H., On the Laplace-type asymptotics and the stochastic Taylor expansion for Itô functionals of Brownian rough paths, (Proceedings of RIMS Workshop on Stochastic Analysis and Applications. Proceedings of RIMS Workshop on Stochastic Analysis and Applications, RIMS Kôkyûroku Bessatsu, vol. B6 (2008), Res. Inst. Math. Sci. (RIMS): Res. Inst. Math. Sci. (RIMS) Kyoto), 139-152 · Zbl 1136.60339
[34] Inahama, Y.; Kawabi, H., On asymptotics of Banach space-valued Itô functionals of Brownian rough paths, (Stochastic Analysis and Applications. Stochastic Analysis and Applications, Abel Symp., vol. 2 (2007), Springer: Springer Berlin), 415-434 · Zbl 1176.60045
[35] Inahama, Y.; Kawabi, H., Asymptotic expansions for the Laplace approximations for Itô functionals of Brownian rough paths, J. Funct. Anal., 243, 1, 270-322 (2007) · Zbl 1114.60062
[36] Lejay, A., Global solutions to rough differential equations with unbounded vector fields, (Donati-Martin, C.; Lejay, A.; Rouault, A., Séminaire de Probabilités XLIV. Séminaire de Probabilités XLIV, Lecture Notes in Mathematics, vol. 2046 (2012), Springer-Verlag) · Zbl 1254.60059
[37] Lejay, A., On rough differential equations, Electron. J. Probab., 14, 12, 341-364 (2009) · Zbl 1190.60044
[38] Lejay, A., Controlled differential equations as Young integrals: a simple approach, J. Differential Equations, 249, 1777-1798 (2010) · Zbl 1216.34058
[39] Lejay, A., Yet another introduction to rough paths, (Séminaire de Probabilités XLII. Séminaire de Probabilités XLII, Lecture Notes in Mathematics, vol. 1979 (2009), Springer-Verlag), 1-101 · Zbl 1198.60002
[40] Lejay, A., An introduction to rough paths, (Séminaire de Probabilités, XXXVII. Séminaire de Probabilités, XXXVII, Lecture Notes in Mathematics, vol. 1832 (2003), Springer-Verlag), 1-59 · Zbl 1041.60051
[41] Lejay, A.; Victoir, N., On \((p, q)\)-rough paths, J. Differential Equations, 225, 1, 103-133 (2006) · Zbl 1097.60048
[42] Leon, J. A.; Tindel, S., Malliavin calculus for fractional delay equations, J. Theoret. Probab., 25, 3, 854-889 (2012) · Zbl 1259.60069
[43] Li, X. D.; Lyons, T. J., Smoothness of Itô maps and diffusion processes on path spaces. I, Ann. Sci. Éc. Norm. Supér., 39, 4, 649-677 (2006) · Zbl 1127.60033
[44] Lyons, T.; Qian, Z., System Control and Rough Paths, Oxford Mathematical Monographs (2002), Oxford University Press · Zbl 1029.93001
[45] Lyons, T.; Caruana, M.; Lévy, T., Differential equations driven by rough paths, (Picard, J., École d’été des Probabilités de Saint-Flour XXXIV — 2004. École d’été des Probabilités de Saint-Flour XXXIV — 2004, Lecture Notes in Mathematics, vol. 1908 (2007), Springer) · Zbl 1176.60002
[46] Lyons, T. J.; Qian, Z. M., Calculus of variation for multiplicative functionals, (New Trends in Stochastic Analysis. New Trends in Stochastic Analysis, Charingworth, 1994 (1997), World Sci. Publishing: World Sci. Publishing River Edge, NJ), 348-374
[47] Lyons, T. J.; Qian, Z., Flow equations on spaces of rough paths, J. Funct. Anal., 149, 1, 135-159 (1997) · Zbl 0890.58090
[48] Lyons, T.; Qian, Z., Flow of diffeomorphisms induced by a geometric multiplicative functional, Probab. Theory Related Fields, 112, 1, 91-119 (1998) · Zbl 0918.60009
[49] Lyons, T.; Victoir, N., An extension theorem to rough paths, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24, 5, 835-847 (2007) · Zbl 1134.60047
[50] Malliavin, P.; Thalmaier, A., Stochastic Calculus of Variations in Mathematical Finance, Springer Finance (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1124.91035
[51] Marie, N., Sensitivities via rough paths, ESAIM Probab. Stat., 19, 515-543 (2015) · Zbl 1333.60126
[52] Norton, A., A critical set with nonnull image has large Hausdorff dimension, Trans. Amer. Math. Soc., 296, 1, 367-376 (1986) · Zbl 0596.26008
[53] Nualart, D., The Malliavin Calculus and Related Topics, Probability and its Applications (New York) (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1099.60003
[54] Nualart, D.; Saussereau, B., Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion, Stochastic Process. Appl., 119, 2, 391-409 (2009) · Zbl 1169.60013
[55] Qian, Z.; Tudor, J., Differential structure and flow equations on rough path space, Bull. Sci. Math., 135, 6-7, 695-732 (2011) · Zbl 1229.60072
[56] Unterberger, J.; Unterberger, Jérémie, Moment estimates for solutions of linear stochastic differential equations driven by analytic fractional Brownian motion, Electron. Commun. Probab., 15, 411-417 (2010) · Zbl 1226.60091
[57] Young, L. C., An inequality of the Hölder type, connected with Stieltjes integration, Acta Math., 67, 251-282 (1936) · JFM 62.0250.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.