×

Toeplitz operators between distinct Bergman spaces. (English) Zbl 07606689

For \(0<p< \infty\) and \(-1<\alpha <+\infty,\) let \(L_a^p(\omega_\alpha)\) be the weighted Bergman space which contains analytic functions on the unit disk \(\mathbb{D}\) such that \[ \|f\|_{L_a^p(\omega_\alpha)}^p =\int_\mathbb{D} |f(z)|^p \omega_\alpha (z)dA(z)<\infty. \] For a finite positive Borel measure \(\mu\) on \(\mathbb{D}\), the Toeplitz operator \(T_{\mu,\alpha}\) is defined by \[ T_{\mu,\alpha} f(z)= \int_\mathbb{D} \frac{f(w)}{(1-z\overline{w})^{2+\alpha}}d\mu (w), z\in \mathbb{D}. \] In operator theory, the boundedness and compactness of the Toeplitz operator \(T_{\mu,\alpha}\) has obtained increasing interest in recent years. The case of \(1<p<\infty\) was attacked by Luecking and Zhu, followed by many experts. Very recently, Duan, Guo, Wang and et al. extended Peláez, Rättyä and Sierra’s work on bounded and compact Toeplitz operator. Using some characterizations on Carleson measures for weighted Bergman spaces, Pau and Zhao presented full characterizations of boundedness and compactness of the Toeplitz operator \(T_{\mu,\beta}:L_a^p(\omega_\alpha) \to L_a^q(\omega_\gamma) \), where the parameters satisfy special conditions.
By using technical tricks and methods in harmonic analysis, the authors generalized in a great deal the above results to provide descriptions of the boundedness and compactness of the Toeplitz operator \(T_{\mu,\beta}\) between distinct weighted Bergman spaces \(L_a^p(\omega_\alpha)\) and \( L_a^p(\omega_\beta)\) for \(0<p\leq 1, q=1,-1<\alpha,\beta<\infty\) and \(0<p\leq 1 <q <\infty,\) \(-1<\beta \leq \alpha <\infty\), respectively. It is worthy to mention that partial characterizations depend on the action on \(1\) by the Toeplitz operators. Precisely, for \(\alpha >0,\) let \(\mathcal{LB}^\alpha\) be the Banach space of analytic functions \(f\) on \(\mathbb{D}\) such that \[ \|f\|_{\mathcal{LB}^\alpha}:= |f(0)| +\sup_{z\in \mathbb{D}} (1-|z|^2)^\alpha \log (\frac{2}{1-|z|^2})|f'(z)|<\infty, \] and \(\mathcal{LB}^\alpha_0\) be the set of members \(f\) in \(\mathcal{LB}^\alpha\) such that \[ \lim_{|z|\to 1^-} (1-|z|^2)^\alpha \log (\frac{2}{1-|z|^2})|f'(z)| =0. \] Assume \(\mu\) is a positive Borel measure, \(0<p\leq 1\) and \(-1<\alpha, \beta <\infty\). The authors show that \(T_{\mu,\beta}:L_a^p(\omega_\alpha) \to L_a^1(\omega_\beta) \) is bounded if and only if \(\mu\) is a \(1/p \)-Carleson measure for \( L_a^1(\omega_\beta)\) and \(T_{\mu, \frac{2+\alpha}{p}-2}(1)\in \mathcal{LB}^1\); and that \(T_{\mu,\beta}:L_a^p(\omega_\alpha) \to L_a^1(\omega_\beta) \) is compact if and only if \(\mu\) is a vanishing \(1/p \)-Carleson measure for \( L_a^1(\omega_\beta)\) and \(T_{\mu, \frac{2+\alpha}{p}-2}(1)\in \mathcal{LB}_0^1\).

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
30H20 Bergman spaces and Fock spaces

References:

[1] Duan, Y.; Guo, K.; Wang, S., Toeplitz operators on weighted Bergman spaces induced by a class of radial weights, J Geom Anal, 32, 39 (2022) · Zbl 1492.47035 · doi:10.1007/s12220-021-00777-z
[2] Duren, P.; Schuster, A., Bergman Spaces (2004), Providence: Amer Math Soc, Providence · Zbl 1059.30001 · doi:10.1090/surv/100
[3] Fang, X.; Wang, Z., Two weight inequalities for the Bergman projection with doubling measures, Taiwanese J Math, 19, 919-926 (2015) · Zbl 1357.47049 · doi:10.11650/tjm.19.2015.5138
[4] Luecking, D., Trace ideal criteria for Toeplitz operators, J Funct Anal, 73, 345-368 (1987) · Zbl 0618.47018 · doi:10.1016/0022-1236(87)90072-3
[5] Luecking, D., Embedding theorems for spaces of analytic functions via Khinchine’s inequality, Michigan Math J, 40, 333-358 (1993) · Zbl 0801.46019 · doi:10.1307/mmj/1029004756
[6] Pau, J.; Zhao, R., Carleson measures and Toeplitz operators for weighted Bergman spaces on the unit ball, Michigan Math J, 64, 759-796 (2015) · Zbl 1333.32007 · doi:10.1307/mmj/1447878031
[7] Peláez, J. A.; Rättyä, J., Weighted Bergman spaces induced by rapidly increasing weights, Mem Amer Math Soc, 227, 1066 (2014) · Zbl 1308.30001
[8] Peláez, J. A.; Rättyä, J.; Sierra, K., Berezin transform and Toeplitz operators on Bergman spaces induced by regular weights, J Geom Anal, 28, 656-687 (2018) · Zbl 1470.47022 · doi:10.1007/s12220-017-9837-9
[9] Wang, X.; Liu, T., Toeplitz operators on Bloch-type spaces in the unit ball of ℂ^n, J Math Anal Appl, 368, 727-735 (2010) · Zbl 1192.47025 · doi:10.1016/j.jmaa.2010.03.010
[10] Wu, Z.; Zhao, R.; Zorboska, N., Toeplitz operators on Bloch-type spaces, Proc Amer Math Soc, 134, 3531-3542 (2006) · Zbl 1105.47026 · doi:10.1090/S0002-9939-06-08473-5
[11] Zhu, K., Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains, J Operator Theory, 20, 329-357 (1988) · Zbl 0676.47016
[12] Zhu, K., Operator Theory in Function Spaces (2007), Providence: Amer Math Soc, Providence · Zbl 1123.47001 · doi:10.1090/surv/138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.