×

Toeplitz and Hankel operators from Bergman to analytic Besov spaces of tube domains over symmetric cones. (English) Zbl 1423.32008

St. Petersbg. Math. J. 30, No. 4, 723-750 (2019) and Algebra Anal. 30, No. 4, 140-178 (2018).
Let \(D=\mathbb{R}^n+i\Omega\), \(n\ge3\), be the tube domain over an irreducible symmetric cone \(\Omega\) in \(\mathbb{R}^n\) of rank \(r\) with the determinant function \(\Delta\). One of the main results of the paper concerns Toeplitz operators from a Bergman space \(A^p_\alpha(D)\) into a Besov space \(B^q_\beta(D)\). For a positive Borel measure \(\mu\) on \(D\), and \(\nu>m:=n/r-1\), a Toeplitz operator \(T_\mu^\nu\) is the integral operator defined for any function \(f\) with compact support by \[ T_\mu^\nu f(z)=\int_D K_\nu(z,w)f(w)d\mu(w), \] where \(K_\nu\) is the weighted Bergman kernel.
Theorem 2.1. Suppose that \(q\ge2\), \(1< p\le q< \infty\), and \[ \alpha, \beta, \nu>m, \quad \beta+\frac{q(\nu-\beta)}{q-1}>m, \quad \nu>m+\frac{\beta-m}{q}-\frac{\alpha-m}{p}\,. \] Define the numbers \[ \lambda=1+\frac1{p}-\frac1{q}, \quad \gamma=\lambda^{-1}\,\Bigl(\nu+\frac{\alpha}{p}-\frac{\beta}{q}\Bigr)\,. \] The following conditions are equivalent.
(i) The operator \(T_\mu^\nu\) extends to a bounded operator from \(A^p_\alpha(D)\) to \(B^q_\beta(D)\);
(ii) There is a constant \(C>0\) such that for any \(\delta\in (0, 1)\) and any \(z\in D\) we have \[ \mu(B_\delta(z))\le C\Delta^{\lambda(\gamma+m+1)}(Im\ z). \] The boundedness of Toeplitz operators between Bergman spaces on the unit ball was studied earlier by Pau and Zhao. The authors adapt their idea to the case of the tube domains over irreducible cones.

MSC:

32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables
32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010)
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators

References:

[1] Be D. B\'ekoll\'e, The dual of the Bergman space \(A^1\) in symmetric Siegel domains of type II, Trans. Amer. Soc. 296 (1986), no. 2, 607-619. · Zbl 0626.32033
[2] BB1 D. B\'ekoll\'e, Estimates for the Bergman and Szeg\H o projections in two symmetric domains of \(\mathbbC^n\), Colloq. Math. 68 (1995), no. 1, 81-100. · Zbl 0863.47018
[3] BB2 D. B\'ekoll\'e and A. Bonami, Analysis on tube domains over light cones: some extensions of recent results, Actes des Rencontres d’Analyse Complexe, Poitiers, 2000, 17-37. · Zbl 1039.32002
[4] BBG D. B\'ekoll\'e, A. Bonami, and G. Garrig\'os, Littlewood-Paley decompositions related to symmetric cones, IMHOTEP J. Afr. Math. Pures Appl. 3 (2000), no. 1, 11-41. · Zbl 1014.32014
[5] BBGNPR D. B\'ekoll\'e, A. Bonami, G. Garrig\'os, C. Nana, M. Peloso, and F. Ricci, Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint, IMHOTEP Afr. Math. Pures Appl. 5 (2004), Exp. I, 1-75. · Zbl 1286.32001
[6] BBGR D. B\'ekoll\'e, A. Bonami, G. Garrig\'os, and F. Ricci, Littlewood-Paley decompositions related to symmetric cones and Bergman projections in tube domains, Proc. London Math. Soc. (3) 89 (2004), no. 2, 317-360. · Zbl 1079.42015
[7] BBGRS D. B\'ekoll\'e, A. Bonami, G. Garrig\'os, F. Ricci, and B. Sehba, Analytic Besov spaces inequalities and Hardy-type in tube domains over symmetric cones, J. Reine Angew. Math. 647 (2010), 25-56. · Zbl 1243.42035
[8] BBPR D. B\'ekoll\'e, A. Bonami, M. Peloso, and F. Ricci, Boundedness of Bergman projections on tube domains over light cones, Math. Z. 237 (2001), no. 1, 31-59. · Zbl 0983.32001
[9] BGN D. B\'ekoll\'e, J. Gonessa, and C. Nana, Lebesgue mixed norm estimates for Bergman projectors: from tube domains over homogeneous cones to homogeneous Siegel domains of type \rm II, arXiv:1703.07854. · Zbl 1435.32005
[10] BIN D. B\'ekoll\'e, H. Ishi, and C. Nana, Kor\'anyi’s lemma for homogeneous Siegel domains of type II. Applications and extended results, Bull. Aust. Math. Soc. 90 (2014), no. 1, 77-89. · Zbl 1295.32037
[11] BL A. Bonami and L. Luo, On Hankel operators between Bergman spaces on the unit ball, Houston J. Math. 31 (2005), no. 3, 815-828. · Zbl 1083.47022
[12] BN A. Bonami and C. Nana, Some questions related to the Bergman projection in symmetric domains. Adv. Pure Appl. Math.  6 (2015), no. 4, 191-197. · Zbl 1358.32005
[13] BD J. Bourgain and C. Demeter, The proof of the \(\ell^2\)-decoupling conjecture, Ann. of Math. (2) 182 (2015), no. 1, 351-389. · Zbl 1322.42014
[14] DD D. Debertol, Besov spaces and boundedness of weighted Bergman projections over symmetric tube domains, Dottorato di Ricerca in Matem. Univ. di Genova, Politecnico di Torino, 2003.
[15] FK J. Faraut and A. Kor\'anyi, Analysis on symmetric cones, Oxford Math. Monogr., Clarendon Press, Oxford, 1994. · Zbl 0841.43002
[16] GS G. Garrig\'os and A. Seeger, Plate decompositions for cone multipliers, Hokkaido Univ. Math. Report Ser. 103 (2005), 13-28.
[17] G J. Gonessa, Espaces de type Bergman dans les domaines homog\`“enes de Siegel de type II: D\'”ecomposition atomique des espaces de Bergman et interpolation, Ph. D. Thesis, Univ. Yaound\'e I, 2006.
[18] Gowda M. Gowda, Nonfactorization theorems in weighted Bergman and Hardy spaces on the unit ball of \(\mathbbC^n\), Trans. Amer. Math. Soc. 277 (1983), no. 1, 203-212. · Zbl 0526.32005
[19] Horowitz C. Horowitz, Factorization theorems for functions in the Bergman spaces, Duke Math. J. 44 (1977), no. 1, 201-213. · Zbl 0362.30031
[20] Luecking1 D. Luecking, Embedding theorems for spaces of analytic functions via Khinchine inequality, Michigan Math. J. 40 (1993), no. 2, 333-358. · Zbl 0801.46019
[21] NaSeh C. Nana and B. F. Sehba, Carleson embeddings and two operators on Bergman spaces of tube domains over symmetric cones, Integral Equations Operator Theory 83 (2015), no. 2, 151-178. · Zbl 1326.32018
[22] PauZhao1 J. Pau and R. Zhao, Carleson measures and Toeplitz operators for weighted Bergman spaces of the unit ball, Michigan Math. J. 64 (2015), no. 4, 759-796. · Zbl 1333.32007
[23] PauZhao2 J. Pau and R. Zhao, Weak factorization and Hankel form for weighted Bergman spaces on the unit ball, Math. Ann. 363 (2015), no. 1-2, 363-383. · Zbl 1326.32016
[24] sehba B. F. Sehba, Bergman type operators in tubular domains over symmetric cones, Proc. Edinb. Math. Soc. 52 (2009), no. 2, 529-544. · Zbl 1168.42011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.