×

Berge’s maximum theorem to vector-valued functions with some applications. (English) Zbl 1412.47027

Summary: In this paper, we introduce pseudocontinuity for Berge’s maximum theorem for vector-valued functions which is weaker than semicontinuity. We prove the Berge’s maximum theorem for vector-valued functions with pseudocontinuity and obtain the set-valued mapping of the solutions is upper semicontinuous with nonempty and compact values. As applications, we derive some existence results for weakly Pareto-Nash equilibrium for multiobjective games and generalized multiobjective games both with pseudocontinuous vector-valued payoffs. Moreover, we obtain the existence of essential components of the set of weakly Pareto-Nash equilibrium for these discontinuous games in the uniform topological space of best-reply correspondences. Some examples are given to investigate our results.

MSC:

49J53 Set-valued and variational analysis
91A44 Games involving topology, set theory, or logic
90C29 Multi-objective and goal programming
47H04 Set-valued operators
90C31 Sensitivity, stability, parametric optimization
91A10 Noncooperative games
Full Text: DOI

References:

[1] Aliprantis, C. D.; Border, K. C., Infinite dimensional analysis, A hitchhiker’s guide, Third edition, Springer, Berlin (2006) · Zbl 1156.46001
[2] Anh, N. L. H.; Khanh, P. Q., Calculus and applications of Studniarski’s derivatives to sensitivity and implicit function theorems, Control Cybernet., 43, 33-57 (2014) · Zbl 1318.49028
[3] Berge, C., Topological spaces, Including a treatment of multi-valued functions, vector spaces and convexity, Translated from the French original by E. M. Patterson, Reprint of the 1963 translation, Dover Publications, Inc., Mineola, NY (1997) · Zbl 0114.38602
[4] Carbonell-Nicolau, O., Essential equilibria in normal-form games, J. Econom. Theory, 145, 421-431 (2010) · Zbl 1202.91009 · doi:10.1016/j.jet.2009.06.002
[5] Dutta, P. K.; Mitra, T., Maximum theorems for convex structures with an application to the theory of optimal intertemporal allocation, J. Math. Econom., 18, 77-86 (1989) · Zbl 0679.90016 · doi:10.1016/0304-4068(89)90006-2
[6] Fan, K., Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U. S. A., 38, 121-126 (1952) · Zbl 0047.35103 · doi:10.1073/pnas.38.2.121
[7] Feinberg, E. A.; Kasyanov, P. O., Continuity of minima: local results, Set-Valued Var. Anal., 23, 485-499 (2015) · Zbl 1321.49030 · doi:10.1007/s11228-015-0318-7
[8] Feinberg, E. A.; Kasyanov, P. O.; Voorneveld, M., Berge’s maximum theorem for noncompact image sets, J. Math. Anal. Appl., 413, 1040-1046 (2014) · Zbl 1327.49031 · doi:10.1016/j.jmaa.2013.12.011
[9] Glicksberg, I. L., A further generalization of the Kakutani fixed theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc., 3, 170-174 (1952) · Zbl 0046.12103 · doi:10.2307/2032478
[10] Han, Y.; Huang, N.-J., Some characterizations of the approximate solutions to generalized vector equilibrium problems, J. Ind. Manag. Optim., 12, 1135-1151 (2016) · Zbl 1328.90147 · doi:10.3934/jimo.2016.12.1135
[11] Hillas, J., On the definition of the strategic stability of equilibria, Econometrica, 58, 1365-1390 (1990) · Zbl 0734.90125 · doi:10.2307/2938320
[12] Jiang, J.-H., Essential component of the set of fixed points of the multivalued mappings and its application to the theory of games, Sci. Sinica, 12, 951-964 (1963) · Zbl 0126.38604 · doi:10.1360/ya1963-12-7-951
[13] Kohlberg, E.; Mertens, J. F., On the strategic stability of equilibria, Econometrica, 54, 1003-1037 (1986) · Zbl 0616.90103
[14] Lin, Z., Essential components of the set of weakly Pareto-Nash equilibrium points for multiobjective generalized games in two different topological spaces, J. Optim. Theory Appl., 124, 387-405 (2005) · Zbl 1102.91024 · doi:10.1007/s10957-004-0942-0
[15] Lin, Z.; Yu, J., The existence of solutions for the system of generalized vector quasi-equilibrium problems, Appl. Math. Lett., 18, 415-422 (2005) · Zbl 1074.90041 · doi:10.1016/j.aml.2004.07.023
[16] Liu, C.-P.; Yang, X.-M., Characterizations of the approximate solution sets of nonsmooth optimization problems and its applications, Optim. Lett., 9, 755-768 (2015) · Zbl 1342.90186 · doi:10.1007/s11590-014-0780-4
[17] Luc, D. T., Theory of vector optimization, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin (1989) · Zbl 0695.90002
[18] Morgan, J.; Scalzo, V., Pseudocontinuous functions and existence of Nash equilibria, J. Math. Econom., 43, 174-183 (2007) · Zbl 1280.91010 · doi:10.1016/j.jmateco.2006.10.004
[19] Scalzo, V., Hadamard well-posedness in discontinuous non-cooperative games, J. Math. Anal. Appl., 360, 697-703 (2009) · Zbl 1175.91020 · doi:10.1016/j.jmaa.2009.07.007
[20] Scalzo, V., On the uniform convergence in some classes of non-necessarily continuous functions, Int. J. Contemp. Math. Sci., 4, 617-624 (2009) · Zbl 1191.54013
[21] Song, Q. Q., On essential sets of fixed points for functions, Numer. Funct. Anal. Optim., 36, 942-950 (2015) · Zbl 1356.54048 · doi:10.1080/01630563.2015.1043370
[22] Song, Q. Q.; Wang, L. S., On the stability of the solution for multiobjective generalized games with the payoffs perturbed, Nonlinear Anal., 73, 2680-2685 (2010) · Zbl 1193.91031 · doi:10.1016/j.na.2010.06.048
[23] Terazono, Y.; Matani, A., Continuity of optimal solution functions and their conditions on objective functions, SIAM J. Optim., 25, 2050-2060 (2015) · Zbl 1327.90224 · doi:10.1137/110850189
[24] Tian, G. Q.; Zhou, J.-X., The maximum theorem and the existence of Nash equilibrium of (generalized) games without lower semicontinuities, J. Math. Anal. Appl., 166, 351-364 (1992) · Zbl 0761.90110 · doi:10.1016/0022-247X(92)90302-T
[25] Yang, Z., On existence and essential stability of solutions of symmetric variational relation problems, J. Inequal. Appl., 2014, 1-13 (2014) · Zbl 1372.49023 · doi:10.1186/1029-242X-2014-5
[26] Yang, H.; Yu, J., Essential components of the set of weakly Pareto-Nash equilibrium points, Appl. Math. Lett., 15, 553-560 (2002) · Zbl 1016.91008 · doi:10.1016/S0893-9659(02)80006-4
[27] Yu, J., Essential equilibria of n-person noncooperative games, J. Math. Econom., 31, 361-372 (1999) · Zbl 0941.91006 · doi:10.1016/S0304-4068(97)00060-8
[28] Yu, J., Game theory and nonlinear analysis (Continued), Science Press, Beijing (2011)
[29] Yu, J.; Luo, Q., On essential components of the solution set of generalized games, J. Math. Anal. Appl., 230, 303-310 (1999) · Zbl 0916.90278 · doi:10.1006/jmaa.1998.6202
[30] Yu, J.; Xiang, S.-W., On essential components of the set of Nash equilibrium points, Nonlinear Anal., 38, 259-264 (1999) · Zbl 0967.91004 · doi:10.1016/S0362-546X(98)00193-X
[31] Yu, J.; Yang, H.; Xiang, S.-W., Unified approach to existence and stability of essential components, Nonlinear Anal., 63, 1-2415 (2005) · Zbl 1224.90199 · doi:10.1016/j.na.2005.03.048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.