×

Path connectedness of the efficient solution set for generalized vector quasi-equilibrium problems. (English) Zbl 1489.90170

Summary: In this paper, the efficient solution set for generalized vector quasi-equilibrium problems is investigated. By means of the linear scalarization method, we establish the path connectedness of the efficient solution set for generalized vector quasi-equilibrium problems under some suitable conditions.

MSC:

90C29 Multi-objective and goal programming
90C31 Sensitivity, stability, parametric optimization
49J40 Variational inequalities
Full Text: DOI

References:

[1] Ansari, QH; Flores-Bazán, F., Generalized vector quasi-equilibrium problems with applications, J. Math. Anal. Appl., 277, 246-256 (2003) · Zbl 1022.90023 · doi:10.1016/S0022-247X(02)00535-8
[2] Ansari, QH; Köbis, E.; Sharma, PK, Characterizations of set relations with respect to variable domination structures via oriented distance function, Optimization, 67, 1389-1407 (2018) · Zbl 1404.49010 · doi:10.1080/02331934.2018.1493108
[3] Ansari, QH; Köbis, E.; Sharma, PK, Characterizations of multiobjective robustness via oriented distance function and image space analysis, J. Optim. Theory Appl., 181, 817-839 (2019) · Zbl 1416.49017 · doi:10.1007/s10957-019-01505-y
[4] Ansari, QH; Hamel, AH; Sharma, PK, Ekeland’s variational principle with weighted set order relations, Math. Methods Oper. Res., 91, 117-136 (2020) · Zbl 1435.49005 · doi:10.1007/s00186-019-00679-5
[5] Ansari, QH; Sharma, PK; Qin, X., Characterizations of robust optimality conditions via image space analysis, Optimization, 69, 2063-2083 (2020) · Zbl 1477.90050 · doi:10.1080/02331934.2020.1728269
[6] Lee, GM; Kim, DS; Lee, BS; Yen, ND, Vector variational inequality as a tool for studying vector optimization problems, Nonlinear Anal., 34, 745-765 (1998) · Zbl 0956.49007 · doi:10.1016/S0362-546X(97)00578-6
[7] Cheng, YH, On the connectedness of the solution set for the weak vector variational inequality, J. Math. Anal. Appl., 260, 1-5 (2001) · Zbl 0990.49010 · doi:10.1006/jmaa.2000.7389
[8] Gong, XH, Efficiency and henig efficiency for vector equilibrium problems, J. Optim. Theory Appl., 108, 139-154 (2001) · Zbl 1033.90119 · doi:10.1023/A:1026418122905
[9] Liu, QY; Long, XJ; Huang, NJ, Connectedness of the sets of weak efficient solutions for generalized vector equilibrium problems, Math. Slovaca, 62, 123-136 (2012) · Zbl 1262.47087 · doi:10.2478/s12175-011-0077-3
[10] Gong, XH, Connectedness of the solution sets and scalarization for vector equilibrium problems, J. Optim. Theory Appl., 133, 151-161 (2007) · Zbl 1155.90018 · doi:10.1007/s10957-007-9196-y
[11] Gong, XH; Yao, JC, Connectedness of the set of efficient solutions for generalized systems, J. Optim. Theory Appl., 138, 189-196 (2008) · Zbl 1302.49011 · doi:10.1007/s10957-008-9378-2
[12] Han, Y.; Huang, NJ, The connectedness of the solutions set for generalized vector equilibrium problems, Optimization, 65, 357-367 (2016) · Zbl 1334.49029 · doi:10.1080/02331934.2015.1044899
[13] Xu, YD; Zhang, PP, Connectedness of solution sets of strong vector equilibrium problems with an application, J. Optim. Theory Appl., 178, 131-152 (2018) · Zbl 1398.49010 · doi:10.1007/s10957-018-1244-2
[14] Han, Y.; Huang, NJ, Existence and connectedness of solutions for generalized vector quasi-equilibrium problems, J. Optim. Theory Appl., 179, 65-85 (2018) · Zbl 1409.49009 · doi:10.1007/s10957-016-1032-9
[15] Gong, XH, On the contractibility and connectedness of an efficient point set, J. Math. Anal. Appl., 264, 465-478 (2001) · Zbl 1052.90077 · doi:10.1006/jmaa.2001.7680
[16] Jahn, J., Vector Optimization: Theory, Applications, and Extensions (2011), Berlin: Springer, Berlin · Zbl 1401.90206 · doi:10.1007/978-3-642-17005-8
[17] Peng, ZY; Zhao, Y.; Yang, XM, Semicontinuity of approximate solution mappings to parametric set-valued weak vector equilibrium problems, Numer. Funct. Anal. Optim., 36, 481-500 (2015) · Zbl 1319.49038 · doi:10.1080/01630563.2015.1013551
[18] Han, Y.; Huang, NJ, Existence and stability of solutions for a class of generalized vector equilibrium problems, Positivity, 20, 829-846 (2016) · Zbl 1353.49011 · doi:10.1007/s11117-015-0389-6
[19] Giannessi, F., Vector Variational Inequalities and Vector Equilibria: Mathematical Theories (2000), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 0952.00009
[20] Aubin, JP; Ekeland, I., Applied Nonlinear Analysis (1984), New York: Wiley, New York · Zbl 0641.47066
[21] Göpfert, A.; Riahi, H.; Tammer, C.; Zǎlinescu, C., Variational Methods in Partially Ordered Spaces (2003), Berlin: Springer, Berlin · Zbl 1140.90007
[22] Fu, JY, Generalized vector quasi-equilibrium problems, Math. Mathods Oper. Res., 52, 57-64 (2000) · Zbl 1054.90068 · doi:10.1007/s001860000058
[23] Han, Y.; Huang, NJ, Some characterizations of the approximate solutions to generalized vector equilibrium problems, J. Ind. Manag. Optim., 12, 1135-1151 (2016) · Zbl 1328.90147 · doi:10.3934/jimo.2016.12.1135
[24] Yen, ND; Phuong, TD; Giannessi, F., Connectedness and stability of the solution set in linear fractional vector optimization problems, Vector Variational Inequalities and Vector Equilibria, 479-489 (2000), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 0995.90088 · doi:10.1007/978-1-4613-0299-5_29
[25] Michael, E., Continuous selections: I, Ann. Math., 63, 2, 361-382 (1956) · Zbl 0071.15902 · doi:10.2307/1969615
[26] Tan, NX; Tinh, PN, On the existence of equilibrium points of vector functions, Numer. Funct. Anal. Optim., 19, 141-156 (1998) · Zbl 0896.90161 · doi:10.1080/01630569808816820
[27] Ben-Tal, A.; El Ghaoui, L.; Nemirovski, A., Robust Optimization (2009), Princeton: Princeton University Press, Princeton · Zbl 1221.90001 · doi:10.1515/9781400831050
[28] Wei, HZ; Chen, CR; Li, SJ, Characterizations for optimality conditions of general robust optimization problems, J. Optim. Theory Appl., 177, 835-856 (2018) · Zbl 1394.90538 · doi:10.1007/s10957-018-1256-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.