×

Stability conditions for the Horndeski scalar field gravity model. (English) Zbl 1506.83013


MSC:

83C40 Gravitational energy and conservation laws; groups of motions
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
70H45 Constrained dynamics, Dirac’s theory of constraints
83F05 Relativistic cosmology

References:

[1] Will, Clifford M., The Confrontation between General Relativity and Experiment, Living Rev. Rel., 17, 4 (2014) · Zbl 1316.83019 · doi:10.12942/lrr-2014-4
[2] Bertolami, OrfeuParamos, JorgeAshtekar, AbhayPetkov, VesselinThe experimental status of Special and General Relativity2014463483
[3] Lovelock, D., The Einstein tensor and its generalizations, J. Math. Phys., 12, 498-501 (1971) · Zbl 0213.48801 · doi:10.1063/1.1665613
[4] De Felice, Antonio; Tsujikawa, Shinji, f(R) theories, Living Rev. Rel., 13, 3 (2010) · Zbl 1215.83005 · doi:10.12942/lrr-2010-3
[5] Bertolami, Orfeu; Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N., Extra force in f(R) modified theories of gravity, Phys. Rev. D, 75 (2007) · doi:10.1103/PhysRevD.75.104016
[6] G.W. Horndeski, Invariant variational principles and field theories, Ph.D. Thesis, University of Waterloo, Waterloo, Ontario (1973).
[7] Horndeski, Gregory Walter, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys., 10, 363-384 (1974) · doi:10.1007/BF01807638
[8] Horndeski, G. W., Conservation of Charge and the Einstein-Maxwell Field Equations, J. Math. Phys., 17, 1980-1987 (1976) · doi:10.1063/1.522837
[9] Deffayet, Cedric; Gümrükçüoğlu, A. Emir; Mukohyama, Shinji; Wang, Yi, A no-go theorem for generalized vector Galileons on flat spacetime, JHEP, 04, 082 (2014) · doi:10.1007/JHEP04(2014)082
[10] Heisenberg, Lavinia, Generalization of the Proca Action, JCAP, 05 (2014) · doi:10.1088/1475-7516/2014/05/015
[11] Tasinato, Gianmassimo, Cosmic Acceleration from Abelian Symmetry Breaking, JHEP, 04, 067 (2014) · Zbl 1333.83281 · doi:10.1007/JHEP04(2014)067
[12] Deffayet, C.; Gao, Xian; Steer, D. A.; Zahariade, G., From k-essence to generalised Galileons, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.064039
[13] Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun’ichi, Generalized G-inflation: Inflation with the most general second-order field equations, Prog. Theor. Phys., 126, 511-529 (2011) · Zbl 1243.83080 · doi:10.1143/PTP.126.511
[14] Deffayet, C.; Esposito-Farese, Gilles; Vikman, A., Covariant Galileon, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.084003
[15] Clifton, Timothy; Ferreira, Pedro G.; Padilla, Antonio; Skordis, Constantinos, Modified Gravity and Cosmology, Phys. Rept., 513, 1-189 (2012) · doi:10.1016/j.physrep.2012.01.001
[16] Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J., Gauge Fields and Inflation, Phys. Rept., 528, 161-261 (2013) · Zbl 1297.83055 · doi:10.1016/j.physrep.2013.03.003
[17] Dimopoulos, Konstantinos, Statistical Anisotropy and the Vector Curvaton Paradigm, Int. J. Mod. Phys. D, 21 (2012) · Zbl 1277.83109 · doi:10.1142/S021827181250023X
[18] LIGO Scientific, Virgo, Fermi-GBM, INTEGRAL Collaboration; Abbott, B. P., Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, Astrophys. J. Lett., 848, L13 (2017) · doi:10.3847/2041-8213/aa920c
[19] Baker, T.; Bellini, E.; Ferreira, P. G.; Lagos, M.; Noller, J.; Sawicki, I., Strong constraints on cosmological gravity from GW170817 and GRB 170817A, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.251301
[20] Creminelli, Paolo; Vernizzi, Filippo, Dark Energy after GW170817 and GRB170817A, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.251302
[21] Sakstein, Jeremy; Jain, Bhuvnesh, Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.251303
[22] Ezquiaga, Jose María; Zumalacárregui, Miguel, Dark Energy After GW170817: Dead Ends and the Road Ahead, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.251304
[23] Bertolami, Orfeu; Gomes, Cláudio; Lobo, Francisco S. N., Gravitational waves in theories with a non-minimal curvature-matter coupling, Eur. Phys. J. C, 78, 303 (2018) · doi:10.1140/epjc/s10052-018-5781-5
[24] De Felice, Antonio; Frusciante, Noemi; Papadomanolakis, Georgios, On the stability conditions for theories of modified gravity in the presence of matter fields, JCAP, 03 (2017) · Zbl 1515.83218 · doi:10.1088/1475-7516/2017/03/027
[25] Bahamonde, Sebastian; Dialektopoulos, Konstantinos F.; Levi Said, Jackson, Can Horndeski Theory be recast using Teleparallel Gravity?, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.064018
[26] Bahamonde, Sebastian; Dialektopoulos, Konstantinos F.; Gakis, Viktor; Levi Said, Jackson, Reviving Horndeski theory using teleparallel gravity after GW170817, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.084060
[27] Bahamonde, Sebastian; Dialektopoulos, Konstantinos F.; Hohmann, Manuel; Levi Said, Jackson, Post-Newtonian limit of Teleparallel Horndeski gravity, Class. Quant. Grav., 38 (2020) · Zbl 1479.83194 · doi:10.1088/1361-6382/abc441
[28] Rodriguez, Yeinzon; Navarro, Andres A., Scalar and vector Galileons, J. Phys. Conf. Ser., 831 (2017) · doi:10.1088/1742-6596/831/1/012004
[29] Schon, R.; Yau, Shing-Tung, On the Proof of the positive mass conjecture in general relativity, Commun. Math. Phys., 65, 45-76 (1979) · Zbl 0405.53045 · doi:10.1007/BF01940959
[30] Schon, Richard; Yau, Shing-Tung, Proof of the positive mass theorem. 2, Commun. Math. Phys., 79, 231-260 (1981) · Zbl 0494.53028 · doi:10.1007/BF01942062
[31] Witten, Edward, A Simple Proof of the Positive Energy Theorem, Commun. Math. Phys., 80, 381 (1981) · Zbl 1051.83532 · doi:10.1007/BF01208277
[32] Nester, James A., A New gravitational energy expression with a simple positivity proof, Phys. Lett. A, 83, 241 (1981) · doi:10.1016/0375-9601(81)90972-5
[33] Boucher, W., POSITIVE ENERGY WITHOUT SUPERSYMMETRY, Nucl. Phys. B, 242, 282-296 (1984) · doi:10.1016/0550-3213(84)90394-8
[34] Gibbons, G. W.; Hull, C. M.; Warner, N. P., The Stability of Gauged Supergravity, Nucl. Phys. B, 218, 173 (1983) · doi:10.1016/0550-3213(83)90480-7
[35] Bertolami, O., Stability Conditions for a Scalar Field Coupled Nonminimally With Gravity, Phys. Lett. B, 186, 161-166 (1987) · doi:10.1016/0370-2693(87)90273-5
[36] Bertolami, Orfeu; Zarro, Carlos A. D., Stability Conditions For a Noncommutative Scalar Field Coupled to Gravity, Phys. Lett. B, 673, 83-89 (2009) · doi:10.1016/j.physletb.2009.02.001
[37] Nozawa, Masato; Shiromizu, Tetsuya, Modeling scalar fields consistent with positive mass, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.023011
[38] Nozawa, Masato; Shiromizu, Tetsuya, Positive mass theorem in extended supergravities, Nucl. Phys. B, 887, 380-399 (2014) · Zbl 1325.83005 · doi:10.1016/j.nuclphysb.2014.09.002
[39] Dolgov, A. D.; Kawasaki, Masahiro, Can modified gravity explain accelerated cosmic expansion?, Phys. Lett. B, 573, 1-4 (2003) · Zbl 1037.83028 · doi:10.1016/j.physletb.2003.08.039
[40] Planck Collaboration; Akrami, Y., Planck 2018 results. X. Constraints on inflation, Astron. Astrophys., 641, A10 (2020) · doi:10.1051/0004-6361/201833887
[41] Gomes, Cláudio; Bertolami, Orfeu; Rosa, João G., Inflation with Planck data: A survey of some exotic inflationary models, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.104061
[42] Gomes, Cláudio; Rosa, João G.; Bertolami, Orfeu, Inflation in non-minimal matter-curvature coupling theories, JCAP, 06 (2017) · Zbl 1515.83224 · doi:10.1088/1475-7516/2017/06/021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.