×

A multiparameter fractional Laplace problem with semipositone nonlinearity. (English) Zbl 1480.35390

Summary: In this paper we prove the existence of at least one positive solution for nonlocal semipositone problem of the type \[ (P_{\lambda}^{\mu}) \begin{cases} (-\Delta)^s u & = \quad \lambda (u^q -1)+\mu u^r \text{ in } \Omega \\ \qquad u & > \quad 0 \text{ in } \Omega \\ \qquad u & \equiv \quad 0 \text{ on } \mathbb{R}^N \setminus\Omega. \end{cases} \] when the positive parameters \(\lambda\) and \(\mu\) belong to certain range. Here \(\Omega\subset \mathbb{R}^N\) is assumed to be a bounded open set with smooth boundary, \(s\in (0, 1), N> 2s\) and \(0<q<1<r\leq \frac{N+2s}{N- 2s}\). First we consider \((P_{\lambda}^{\mu})\) when \(\mu = 0\) and prove that there exists \(\lambda_0\in (0, \infty)\) such that for all \(\lambda > \lambda_0\) the problem \((P_{\lambda}^0)\) admits at least one positive solution. In fact we will show the existence of a continuous branch of maximal solutions of \((P_{\lambda}^0)\) emanating from infinity. Next for each \(\lambda >\lambda_0\) and for all \(0<\mu <\mu_{\lambda}\) we establish the existence of at least one positive solution of \((P_{\lambda}^{\mu})\) using variational method. Also in the sub critical case, i.e., for \(1<r<\frac{N+2s}{N-2s}\), we show the existence of second positive solution via mountain pass argument.

MSC:

35R11 Fractional partial differential equations
35A15 Variational methods applied to PDEs
35B33 Critical exponents in context of PDEs
35J20 Variational methods for second-order elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35J61 Semilinear elliptic equations

References:

[1] A. Ambrosetti; P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[2] H. Berestycki; L. A. Caffarelli; L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math., 50, 1089-1111 (1997) · Zbl 0906.35035 · doi:10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6
[3] G. M. Bisci; R. Servadei, A bifurcation result for non-local fractional equations, Anal. Appl. (Singap.), 13, 371-394 (2015) · Zbl 1328.35280 · doi:10.1142/S0219530514500067
[4] G. M. Bisci; R. Servadei, Lower semicontinuity of functionals of fractional type and applications to nonlocal equations with critical Sobolev exponent, Adv. Differ. Equ., 20, 635-660 (2015) · Zbl 1322.49021
[5] H. Brézis; E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88, 486-490 (1983) · Zbl 0526.46037 · doi:10.2307/2044999
[6] C. Bucur and E. Valdinoci, Nonlocal diffusion and applications, Lecture Notes of the Unione Matematica Italiana, 20. Springer. · Zbl 1377.35002
[7] A. Castro; R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A, 108, 291-302 (1988) · Zbl 0659.34018 · doi:10.1017/S0308210500014670
[8] David G. Costa; Humberto Ramos Quoirin; Jianfu Yang, On a variational approach to existence and multiplicity results for semipositone problems, Electronic J. Differ. Equ., 2006, 1-10 (2006) · Zbl 1120.35307
[9] David G. Costa; Humberto Ramos Quoirin; Hossein Tehrani, A Variational approach to superliner semipositone elliptic problems, Proc. Amer. Math. Soc., 145, 2661-2675 (2017) · Zbl 1367.35070 · doi:10.1090/proc/13426
[10] R. Dhanya, Positive solution curves of an infinite semipositone problem, Electron. J. Differ. Equ., 2018, 1-14 (2018) · Zbl 1403.35093
[11] R. Dhanya; Q. Morris; R. Shivaji, Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball, J Math. Anal. Appl., 434, 1533-1548 (2016) · Zbl 1328.35024 · doi:10.1016/j.jmaa.2015.07.016
[12] A. Fiscella; R. Servadei; E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40, 235-253 (2015) · Zbl 1346.46025 · doi:10.5186/aasfm.2015.4009
[13] Francesca Faraci; Csaba Farkas, A quasilinear elliptic problem involving critical Sobolev exponent, Collect. Math., 66, 243-259 (2015) · Zbl 1317.35095 · doi:10.1007/s13348-014-0125-8
[14] G. Franzina and G. Palatucci, Fractional \(p\)-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373-386. · Zbl 1327.35286
[15] Jacques J. Giacomoni; Tuhina Mukherjee; Konijeti Sreenadh, Existence of three positive solutions for a nonlocal singular Dirichlet boundary problem, Adv. Nonlinear Stud., 19, 333-352 (2019) · Zbl 1416.35294 · doi:10.1515/ans-2018-0011
[16] Tommaso Leonori; Ireneo Peral; Ana Primo; Fernando Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35, 6031-6068 (2015) · Zbl 1332.45009 · doi:10.3934/dcds.2015.35.6031
[17] P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, Siam Review, 24, 441-467 (1982) · Zbl 0511.35033 · doi:10.1137/1024101
[18] J. Mawhin and M. Bisci, A Brezis-Nirenberg type result for a nonlocal fractional operator, J. London Math. Soc., 95, (2017), 73-93. · Zbl 1398.35276
[19] Quinn Morris; Ratnasingham Shivaji; Inbo Sim, Existence of positive radial solutions for a superlinear semipo sitone p-Laplacian problem on the exterior of a ball, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 148, 409-428 (2018) · Zbl 1393.35063 · doi:10.1017/S0308210517000452
[20] Eleonora Di Nezza; Giampiero Palatucci; Enrico Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques, 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[21] K. Perera; R. Shivaji; I. Sim, A class of semipositone p-Laplacian problems with a critical growth reaction term, Adv. Nonlinear Anal., 9, 516-525 (2020) · Zbl 1421.35178 · doi:10.1515/anona-2020-0012
[22] K. Perera; R. Shivaji, Positive solutions of multiparameter semipositone \(p\)-Laplacian problems, J. Math. Anal. Appl., 338, 1397-1400 (2008) · Zbl 1135.35340 · doi:10.1016/j.jmaa.2007.05.085
[23] Xavier Ros-Oton, Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat., 60, 3-26 (2016) · Zbl 1337.47112
[24] Xavier Ros-Oton; Joaquim Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101, 275-302 (2014) · Zbl 1285.35020 · doi:10.1016/j.matpur.2013.06.003
[25] M. Squassina, Two solutions for inhomogeneous nonlinear elliptic equations at critical growth, Nonlinear Differ. Equ. Appl., 11, 53-71 (2004) · Zbl 1138.35330 · doi:10.1007/s00030-003-1046-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.