×

A three solution theorem for a singular differential equation with nonlinear boundary conditions. (English) Zbl 1441.34040

Summary: We study positive solutions to singular boundary value problems of the form: \[\begin{cases} -u'' = h(t) \frac{f(u)}{u^\alpha} \quad \text{for } t \in (0,1), \\ u(0) = 0, \\ u'(1) + c(u(1)) u(1) = 0, \end{cases}\] where \(0< \alpha< 1, h \colon (0,1] \rightarrow (0,\infty)\) is continuous such that \(h(t)\leq d/t^\beta\) for some \(d> 0\) and \(\beta\in[0,1-\alpha)\) and \(c \colon [0,\infty) \rightarrow [0,\infty)\) is continuous such that \(c(s)s\) is nondecreasing. We assume that \(f \colon [0,\infty) \rightarrow(0,\infty)\) is continuously differentiable such that \([(f(s)-f(0))/s^\alpha]+\tau s\) is strictly increasing for some \(\tau\geq 0\) for \(s\in(0,\infty)\). When there exists a pair of sub-supersolutions \((\psi,\phi)\) such that \(0\leq \psi\leq\phi \), we first establish a minimal solution \(\underline u\) and a maximal solution \(\overline u\) in \([\psi,\phi]\). When there exist two pairs of sub-supersolutions \((\psi_1,\phi_1)\) and \((\psi_2,\phi_2)\) where \(0\leq \psi_1 \leq \psi_2 \leq \phi_1, \psi_1 \leq \phi_2 \leq \phi_1\) with \(\psi_2 \not \leq \phi_2\), and \(\psi_2, \phi_2\) are not solutions, we next establish the existence of at least three solutions \(u_1, u_2\) and \(u_3\) satisfying \(u_1\in [\psi_1,\phi_2], u_2\in [\psi_2,\phi_1]\) and \(u_3\in [\psi_1,\phi_1]\setminus ([\psi_1,\phi_2]\cup [\psi_2,\phi_1])\).

MSC:

34B16 Singular nonlinear boundary value problems for ordinary differential equations
34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations

References:

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620-709. · Zbl 0345.47044
[2] K. Brown, M. M. A. Ibrahim and R. Shivaji, S-shaped bifurcation curves, J. Nonlinear Anal. 5 (1981), 475-486. · Zbl 0458.35036
[3] D. Butler, E. Ko, E.K. Lee and R. Shivaji, Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions, Commun. Pure Appl. Anal. 13 (2014), 2713-2731. · Zbl 1304.35293 · doi:10.3934/cpaa.2014.13.2713
[4] R.S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, 2004. · Zbl 1059.92051
[5] R.S. Cantrell and C. Cosner, Density dependent behavior at habitat boundaries and the allee effect, Bull. Math. Biol. 69 (2007), 2339-2360. · Zbl 1298.92111 · doi:10.1007/s11538-007-9222-0
[6] D. A. Frank-Kamenetskiĭ, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, 1969.
[7] J. Goddard II, E.K. Lee and R. Shivaji, Population models with diffusion, strong allee effect, and nonlinear boundary conditions, Nonlinear Anal. 74 (2011), 6202-6208. · Zbl 1227.35172 · doi:10.1016/j.na.2011.06.001
[8] E.K. Lee, S. Sasi and R. Shivaji, S-shaped bifurcation curves in ecosystems, J. Math. Anal. Appl. 381 (2011), 732-741. · Zbl 1221.35421 · doi:10.1016/j.jmaa.2011.03.048
[9] E.K. Lee, R. Shivaji and B. Son, Positive radial solutions to classes of singular problems on the exterior domain of a ball, J. Math. Anal. Appl. 434 (2016), 1597-1611. · Zbl 1328.35051 · doi:10.1016/j.jmaa.2015.09.072
[10] R. Dhanya, E. Ko and R. Shivaji, A three solution theorem for singular nonlinear elliptic boundary value problems, J. Math. Anal. Appl. 424 (2015), 598-612. · Zbl 1310.35130 · doi:10.1016/j.jmaa.2014.11.012
[11] R. Dhanya, E. Ko and R. Shivaji, A three solution theorem for a two-point singular boundary value problem with an unbounded weight, Electron. J. Differ. Equ. Conf. 23 (2016), 131-138. · Zbl 1347.34039
[12] R. Dhanya, Q. Morris and R. Shivaji, Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball, J. Math. Anal. Appl. 434 (2016), 1533-1548. · Zbl 1328.35024 · doi:10.1016/j.jmaa.2015.07.016
[13] J. Giacomoni, I. Schindler and P. Takáč, Sobolev versus \(H \ddot{\mbox{o}}\) lder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. 6 (2007), 117-158. · Zbl 1181.35116
[14] F. Inkmann, Existence and multiplicity theorems for semilinear elliptic equations with nonlinear boundary conditions, Indiana Univ. Math. J. 31 (1982), 213-221. · Zbl 0533.35035 · doi:10.1512/iumj.1982.31.31019
[15] M.H. Protter and H.F. Weinberger, Maximum principles in differential equations, Springer-Verlag, 1984 · Zbl 0549.35002
[16] N.N. Semenov, Chemical Kinetics and Chain Reactions, Oxford University Press, 1935.
[17] R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications, Lecture Notes in Pure and Applied Mathematics (V. Lakshmikantham, ed.) 109 (1987), 561-566. · Zbl 0647.35031
[18] Y.B. Zeldovich, G.I. Barenblatt, V.B. Librovich and G.M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Consultants Bureau, 1985.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.