×

Tidal love numbers of Proca stars. (English) Zbl 1492.85016


MSC:

85A15 Galactic and stellar structure
83C35 Gravitational waves
35C08 Soliton solutions
81V73 Bosonic systems in quantum theory
82B26 Phase transitions (general) in equilibrium statistical mechanics
83C56 Dark matter and dark energy
83C57 Black holes

References:

[1] R. Brito, V. Cardoso, C.A.R. Herdeiro and E. Radu, 2016 Proca stars: gravitating Bose-Einstein condensates of massive spin 1 particles, https://doi.org/10.1016/j.physletb.2015.11.051 Phys. Lett. B752 291 [1508.05395] · doi:10.1016/j.physletb.2015.11.051
[2] LIGO Scientific and Virgo collaborations, 2017 GW170817: observation of gravitational waves from a binary neutron star inspiral, https://doi.org/10.1103/PhysRevLett.119.161101 Phys. Rev. Lett.119 161101 [1710.05832] · doi:10.1103/PhysRevLett.119.161101
[3] LIGO Scientific and Virgo collaborations, 2020 GW190425: observation of a compact binary coalescence with total mass ∼ 3.4 M_⊙, https://doi.org/10.3847/2041-8213/ab75f5 Astrophys. J. Lett.892 L3 [2001.01761] · doi:10.3847/2041-8213/ab75f5
[4] A.E.H. Love, 1909 The yielding of the earth to disturbing forces, https://doi.org/10.1098/rspa.1909.0008 Proc. Roy. Soc. London A82 73 · JFM 40.0993.02 · doi:10.1098/rspa.1909.0008
[5] A.E.H. Love, 1911 Some problems of geodynamics, Cornell University Library, Ithaca, NY, U.S.A. · JFM 42.1019.01
[6] E.E. Flanagan and T. Hinderer, 2008 Constraining neutron star tidal Love numbers with gravitational wave detectors, https://doi.org/10.1103/PhysRevD.77.021502 Phys. Rev. D77 021502 [0709.1915] · doi:10.1103/PhysRevD.77.021502
[7] T. Hinderer, 2008 Tidal Love numbers of neutron stars, https://doi.org/10.1086/533487 Astrophys. J.677 1216 [0711.2420] · doi:10.1086/533487
[8] T. Damour and A. Nagar, 2009 Relativistic tidal properties of neutron stars, https://doi.org/10.1103/PhysRevD.80.084035 Phys. Rev. D80 084035 [0906.0096] · doi:10.1103/PhysRevD.80.084035
[9] T. Binnington and E. Poisson, 2009 Relativistic theory of tidal Love numbers, https://doi.org/10.1103/PhysRevD.80.084018 Phys. Rev. D80 084018 [0906.1366] · doi:10.1103/PhysRevD.80.084018
[10] S. Postnikov, M. Prakash and J.M. Lattimer, 2010 Tidal Love numbers of neutron and self-bound quark stars, https://doi.org/10.1103/PhysRevD.82.024016 Phys. Rev. D82 024016 [1004.5098] · doi:10.1103/PhysRevD.82.024016
[11] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, [1807.06209]
[12] A. Suárez, V.H. Robles and T. Matos, 2014 A review on the scalar field/Bose-Einstein condensate dark matter model, https://doi.org/10.1007/978-3-319-02063-1\9 Astrophys. Space Sci. Proc.38 107 [1302.0903] · doi:10.1007/978-3-319-02063-1\9
[13] B. Li, T. Rindler-Daller and P.R. Shapiro, 2014 Cosmological constraints on Bose-Einstein-condensed scalar field dark matter, https://doi.org/10.1103/PhysRevD.89.083536 Phys. Rev. D89 083536 [1310.6061] · doi:10.1103/PhysRevD.89.083536
[14] L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, 2017 Ultralight scalars as cosmological dark matter, https://doi.org/10.1103/PhysRevD.95.043541 Phys. Rev. D95 043541 [1610.08297] · doi:10.1103/PhysRevD.95.043541
[15] D.J. Kaup, 1968 Klein-Gordon geon, https://doi.org/10.1103/PhysRev.172.1331 Phys. Rev.1721331 · doi:10.1103/PhysRev.172.1331
[16] R. Ruffini and S. Bonazzola, 1969 Systems of selfgravitating particles in general relativity and the concept of an equation of state, https://doi.org/10.1103/PhysRev.187.1767 Phys. Rev.1871767 · doi:10.1103/PhysRev.187.1767
[17] M. Colpi, S.L. Shapiro and I. Wasserman, 1986 Boson stars: gravitational equilibria of selfinteracting scalar fields, https://doi.org/10.1103/PhysRevLett.57.2485 Phys. Rev. Lett.57 2485 · doi:10.1103/PhysRevLett.57.2485
[18] F.V. Kusmartsev, E.W. Mielke and F.E. Schunck, 1991 Gravitational stability of boson stars, https://doi.org/10.1103/PhysRevD.43.3895 Phys. Rev. D43 3895 [0810.0696] · doi:10.1103/PhysRevD.43.3895
[19] C.G. Boehmer and T. Harko, 2007 Can dark matter be a Bose-Einstein condensate? J. Cosmol. Astropart. Phys.2007 06 025 [0705.4158]
[20] F.E. Schunck and E.W. Mielke, 2003 General relativistic boson stars, https://doi.org/10.1088/0264-9381/20/20/201 Class. Quant. Grav.20 R301 [0801.0307] · Zbl 1050.83002 · doi:10.1088/0264-9381/20/20/201
[21] M.O.C. Pires and J.C.C. de Souza, 2012 Galactic cold dark matter as a Bose-Einstein condensate of WISPs J. Cosmol. Astropart. Phys.2012 11 024 [Erratum ibid 11 (2013) E01] [1208.0301]
[22] J.C.C. Souza and M. Ujevic, 2015 Constraining condensate dark matter in galaxy clusters, https://doi.org/10.1007/s10714-015-1934-0 Gen. Rel. Grav.47 100 [1411.7340] · Zbl 1327.83310 · doi:10.1007/s10714-015-1934-0
[23] J. Eby, C. Kouvaris, N.G. Nielsen and L.C.R. Wijewardhana, 2016 Boson stars from self-interacting dark matter J. High Energy Phys. JHEP02(2016)028 [1511.04474] · doi:10.1007/JHEP02(2016)028
[24] D. Croon, J. Fan and C. Sun, 2019 Boson star from repulsive light scalars and gravitational waves J. Cosmol. Astropart. Phys.2019 04 008 [1810.01420] · Zbl 1542.83010
[25] N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, 2009 A theory of dark matter, https://doi.org/10.1103/PhysRevD.79.015014 Phys. Rev. D79 015014 [0810.0713] · doi:10.1103/PhysRevD.79.015014
[26] M. Pospelov and A. Ritz, 2009 Astrophysical signatures of secluded dark matter, https://doi.org/10.1016/j.physletb.2008.12.012 Phys. Lett. B671 391 [0810.1502] · doi:10.1016/j.physletb.2008.12.012
[27] M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, 2009 Naturally light hidden photons in LARGE volume string compactifications J. High Energy Phys. JHEP11(2009)027 [0909.0515]
[28] LIGO Scientific and Virgo collaborations, 2016 Observation of gravitational waves from a binary black hole merger, https://doi.org/10.1103/PhysRevLett.116.061102 Phys. Rev. Lett.116 061102 [1602.03837] · doi:10.1103/PhysRevLett.116.061102
[29] LIGO Scientific and Virgo collaborations, 2016 GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence, https://doi.org/10.1103/PhysRevLett.116.241103 Phys. Rev. Lett.116 241103 [1606.04855] · doi:10.1103/PhysRevLett.116.241103
[30] LIGO Scientific and Virgo collaborations, 2017 GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2, https://doi.org/10.1103/PhysRevLett.118.221101 Phys. Rev. Lett.118 221101 [Erratum ibid 121 (2018) 129901] [1706.01812] · doi:10.1103/PhysRevLett.118.221101
[31] LIGO Scientific and Virgo collaborations, 2017 GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence, https://doi.org/10.1103/PhysRevLett.119.141101 Phys. Rev. Lett.119 141101 [1709.09660] · doi:10.1103/PhysRevLett.119.141101
[32] LIGO Scientific and Virgo collaborations, 2017 GW170608: observation of a 19-solar-mass binary black hole coalescence, https://doi.org/10.3847/2041-8213/aa9f0c Astrophys. J.851 L35 [1711.05578] · doi:10.3847/2041-8213/aa9f0c
[33] M. Gleiser and R. Watkins, 1989 Gravitational stability of scalar matter, https://doi.org/10.1016/0550-3213(89)90627-5 Nucl. Phys. B319 733 · doi:10.1016/0550-3213(89)90627-5
[34] T.D. Lee and Y. Pang, 1989 Stability of mini-boson stars, https://doi.org/10.1016/0550-3213(89)90365-9 Nucl. Phys. B315 477 · doi:10.1016/0550-3213(89)90365-9
[35] E. Seidel and W.-M. Suen, 1990 Dynamical evolution of boson stars. 1. Perturbing the ground state, https://doi.org/10.1103/PhysRevD.42.384 Phys. Rev. D42 384 · doi:10.1103/PhysRevD.42.384
[36] F. Guzman, 2004 Evolving spherical boson stars on a 3D cartesian grid, https://doi.org/10.1103/PhysRevD.70.044033 Phys. Rev. D70 044033 [gr-qc/0407054] · doi:10.1103/PhysRevD.70.044033
[37] S.H. Hawley and M.W. Choptuik, 2000 Boson stars driven to the brink of black hole formation, https://doi.org/10.1103/PhysRevD.62.104024 Phys. Rev. D62 104024 [gr-qc/0007039] · doi:10.1103/PhysRevD.62.104024
[38] N. Sanchis-Gual, C. Herdeiro, E. Radu, J.C. Degollado and J.A. Font, 2017 Numerical evolutions of spherical Proca stars, https://doi.org/10.1103/PhysRevD.95.104028 Phys. Rev. D95 104028 [1702.04532] · doi:10.1103/PhysRevD.95.104028
[39] P.V.P. Cunha, J.A. Font, C. Herdeiro, E. Radu, N. Sanchis-Gual and M. Zilhão, 2017 Lensing and dynamics of ultracompact bosonic stars, https://doi.org/10.1103/PhysRevD.96.104040 Phys. Rev. D96 104040 [1709.06118] · doi:10.1103/PhysRevD.96.104040
[40] E. Seidel and W.-M. Suen, 1994 Formation of solitonic stars through gravitational cooling, https://doi.org/10.1103/PhysRevLett.72.2516 Phys. Rev. Lett.72 2516 [gr-qc/9309015] · doi:10.1103/PhysRevLett.72.2516
[41] F. Di Giovanni, N. Sanchis-Gual, C.A.R. Herdeiro and J.A. Font, 2018 Dynamical formation of Proca stars and quasistationary solitonic objects, https://doi.org/10.1103/PhysRevD.98.064044 Phys. Rev. D98 064044 [1803.04802] · doi:10.1103/PhysRevD.98.064044
[42] C. Palenzuela, I. Olabarrieta, L. Lehner and S.L. Liebling, 2007 Head-on collisions of boson stars, https://doi.org/10.1103/PhysRevD.75.064005 Phys. Rev. D75 064005 [gr-qc/0612067] · doi:10.1103/PhysRevD.75.064005
[43] C. Palenzuela, L. Lehner and S.L. Liebling, 2008 Orbital dynamics of binary boson star systems, https://doi.org/10.1103/PhysRevD.77.044036 Phys. Rev. D77 044036 [0706.2435] · doi:10.1103/PhysRevD.77.044036
[44] M. Bezares, C. Palenzuela and C. Bona, 2017 Final fate of compact boson star mergers, https://doi.org/10.1103/PhysRevD.95.124005 Phys. Rev. D95 124005 [1705.01071] · doi:10.1103/PhysRevD.95.124005
[45] C. Palenzuela, P. Pani, M. Bezares, V. Cardoso, L. Lehner and S. Liebling, 2017 Gravitational wave signatures of highly compact boson star binaries, https://doi.org/10.1103/PhysRevD.96.104058 Phys. Rev. D96 104058 [1710.09432] · doi:10.1103/PhysRevD.96.104058
[46] N. Sanchis-Gual, C. Herdeiro, J.A. Font, E. Radu and F. Di Giovanni, 2019 Head-on collisions and orbital mergers of Proca stars, https://doi.org/10.1103/PhysRevD.99.024017 Phys. Rev. D99 024017 [1806.07779] · doi:10.1103/PhysRevD.99.024017
[47] M. Bezares and C. Palenzuela, 2018 Gravitational waves from dark boson star binary mergers, https://doi.org/10.1088/1361-6382/aae87c Class. Quant. Grav.35 234002 [1808.10732] · Zbl 1431.83036 · doi:10.1088/1361-6382/aae87c
[48] V. Cardoso, E. Franzin, A. Maselli, P. Pani and G. Raposo, 2017 Testing strong-field gravity with tidal Love numbers, https://doi.org/10.1103/PhysRevD.95.084014 Phys. Rev. D95 084014 [Addendum ibid 95 (2017) 089901] [1701.01116] · doi:10.1103/PhysRevD.95.084014
[49] N. Sanchis-Gual et al., 2019 Nonlinear dynamics of spinning bosonic stars: formation and stability, https://doi.org/10.1103/PhysRevLett.123.221101 Phys. Rev. Lett.123 221101 [1907.12565] · doi:10.1103/PhysRevLett.123.221101
[50] J.G. Rosa and S.R. Dolan, 2012 Massive vector fields on the Schwarzschild spacetime: quasi-normal modes and bound states, https://doi.org/10.1103/PhysRevD.85.044043 Phys. Rev. D85 044043 [1110.4494] · doi:10.1103/PhysRevD.85.044043
[51] P. Pani, E. Berti and L. Gualtieri, 2013 Scalar, electromagnetic and gravitational perturbations of Kerr-Newman black holes in the slow-rotation limit, https://doi.org/10.1103/PhysRevD.88.064048 Phys. Rev. D88 064048 [1307.7315] · doi:10.1103/PhysRevD.88.064048
[52] T. Regge and J.A. Wheeler, 1957 Stability of a Schwarzschild singularity, https://doi.org/10.1103/PhysRev.108.1063 Phys. Rev.1081063 · Zbl 0079.41902 · doi:10.1103/PhysRev.108.1063
[53] A. Guerra Chaves and T. Hinderer, 2019 Probing the equation of state of neutron star matter with gravitational waves from binary inspirals in light of GW170817: a brief review, https://doi.org/10.1088/1361-6471/ab45be J. Phys. G46 123002 [1912.01461] · doi:10.1088/1361-6471/ab45be
[54] K.S. Thorne, 1980 Multipole expansions of gravitational radiation, https://doi.org/10.1103/RevModPhys.52.299 Rev. Mod. Phys.52 299 · doi:10.1103/RevModPhys.52.299
[55] E. Franzin, V. Cardoso, P. Pani and G. Raposo, 2017 Testing strong gravity with gravitational waves and Love numbers, https://doi.org/10.1088/1742-6596/841/1/012035 J. Phys. Conf. Ser.841 012035 · doi:10.1088/1742-6596/841/1/012035
[56] K. Yagi and N. Yunes, 2017 Approximate universal relations for neutron stars and quark stars, https://doi.org/10.1016/j.physrep.2017.03.002 Phys. Rept.681 1 [1608.02582] · Zbl 1366.85002 · doi:10.1016/j.physrep.2017.03.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.