×

Singularly continuous spectrum of a self-similar Laplacian on the half-line. (English) Zbl 1341.60066

Summary: We investigate the spectrum of the self-similar Laplacian, which generates the so-called “\(pq\) random walk” on the integer half-line \(\mathbb{Z}_{+}\). Using the method of spectral decimation, we prove that the spectral type of the Laplacian is singularly continuous whenever \(p \neq \frac{1}{2}\). This serves as a toy model for generating a singularly continuous spectrum, which can be generalized to more complicated settings. We hope it will provide more insight into Fibonacci-type and other weakly self-similar models.{
©2016 American Institute of Physics}

MSC:

60H25 Random operators and equations (aspects of stochastic analysis)
60G18 Self-similar stochastic processes
60G50 Sums of independent random variables; random walks
35C06 Self-similar solutions to PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

References:

[1] Akkermans, E., Statistical mechanics and quantum fields on fractals, Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. II. Fractals in Applied Mathematics, 601, 1-21 (2013) · Zbl 1321.81024
[2] Akkermans, E.; Dunne, G.; Teplyaev, A., Thermodynamics of photons on fractals, Phys. Rev. Lett., 105, 23, 230407 (2010) · doi:10.1103/PhysRevLett.105.230407
[3] Akkermans, E.; Gurevich, E., Spontaneous emission from a fractal vacuum, EPL, 103, 3, 30009 (2013) · doi:10.1209/0295-5075/103/30009
[4] Alexander, S.; Orbach, R., Density of states on fractals: Fractons, J. Phys., Lett., 43, 17, 625-631 (1982) · doi:10.1051/jphyslet:019820043017062500
[5] Ambjørn, J.; Jurkiewicz, J.; Loll, R., Reconstructing the universe, Phys. Rev. D, 72, 6, 064014 (2005) · doi:10.1103/PhysRevD.72.064014
[6] Andrews, U., Bonik, G., Chen, J. P., Martin, R. W., and Teplyaev, A., “Wave equation on one-dimensional fractals with spectral decimation and the complex dynamics of polynomials,” e-print (2015). · Zbl 1382.35148
[7] Avila, A.; Damanik, D., Generic singular spectrum for ergodic Schrödinger operators, Duke Math. J., 130, 2, 393-400 (2005) · Zbl 1102.82012 · doi:10.1215/S0012-7094-05-13035-6
[8] Bajorin, N.; Chen, T.; Dagan, A.; Emmons, C.; Hussein, M.; Khalil, M.; Mody, P.; Steinhurst, B.; Teplyaev, A., Vibration modes of 3n-gaskets and other fractals, J. Phys. A, 41, 1, 015101 (2008) · Zbl 1181.28007 · doi:10.1088/1751-8113/41/1/015101
[9] Bajorin, N.; Chen, T.; Dagan, A.; Emmons, C.; Hussein, M.; Khalil, M.; Mody, P.; Steinhurst, B.; Teplyaev, A., Vibration spectra of finitely ramified, symmetric fractals, Fractals, 16, 3, 243-258 (2008) · Zbl 1160.28302 · doi:10.1142/S0218348X08004010
[10] Barnsley, M. F.; Geronimo, J. S.; Harrington, A. N., Almost periodic Jacobi matrices associated with Julia sets for polynomials, Commun. Math. Phys., 99, 3, 303-317 (1985) · Zbl 0574.58016 · doi:10.1007/BF01240350
[11] Barnsley, M. F.; Geronimo, J. S.; Harrington, A. N., Condensed Julia sets, with an application to a fractal lattice model Hamiltonian, Trans. Am. Math. Soc., 288, 2, 537-561 (1985) · Zbl 0565.30018 · doi:10.2307/1999952
[12] Bellissard, J., Renormalization group analysis and quasicrystals, Ideas and Methods in Quantum and Statistical Physics, 118-148 (1992) · Zbl 0789.58080
[13] Bellissard, J.; Iochum, B.; Scoppola, E.; Testard, D., Spectral properties of one-dimensional quasi-crystals, Commun. Math. Phys., 125, 3, 527-543 (1989) · Zbl 0825.58010 · doi:10.1007/BF01218415
[14] Bessis, D.; Geronimo, J. S.; Moussa, P., Function weighted measures and orthogonal polynomials on Julia sets, Constr. Approximation, 4, 2, 157-173 (1988) · Zbl 0635.42021 · doi:10.1007/BF02075456
[15] Bessis, D.; Geronimo, J. S.; Moussa, P., Mellin transforms associated with Julia sets and physical applications, J. Stat. Phys., 34, 1-2, 75-110 (1984) · Zbl 0602.58028 · doi:10.1007/BF01770350
[16] Chan, J. F.-C.; Ngai, S.-M.; Teplyaev, A., One-dimensional wave equations defined by fractal Laplacians, Journal d’Analyse Mathematique, 127, 219-246 (2015) · Zbl 1386.35411 · doi:10.1007/s11854-015-0029-x
[17] Chen, J. P.; Molchanov, S.; Teplyaev, A., Spectral dimension and Bohr’s formula for Schrödinger operators on unbounded fractal spaces, J. Phys. A, 48, 39, 395203 (2015) · Zbl 1326.81084 · doi:10.1088/1751-8113/48/39/395203
[18] Damanik, D., “Schrödinger operators with dynamically defined potentials: A survey,” e-print (2014). · Zbl 1541.81060
[19] Damanik, D.; Lenz, D., Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent, Lett. Math. Phys., 50, 4, 245-257 (1999) · Zbl 1044.81036 · doi:10.1023/A:1007614218486
[20] Damanik, D.; Lenz, D., Uniform spectral properties of one-dimensional quasicrystals. I. Absence of eigenvalues, Commun. Math. Phys., 207, 3, 687-696 (1999) · Zbl 0962.81012 · doi:10.1007/s002200050742
[21] Damanik, D.; Embree, M.; Gorodetski, A.; Tcheremchantsev, S., The fractal dimension of the spectrum of the Fibonacci Hamiltonian, Commun. Math. Phys., 280, 2, 499-516 (2008) · Zbl 1192.81151 · doi:10.1007/s00220-008-0451-3
[22] Damanik, D.; Gorodetski, A.; Solomyak, B., Absolutely continuous convolutions of singular measures and an application to the square Fibonacci Hamiltonian, Duke Math. J., 164, 8, 1603-1640 (2015) · Zbl 1358.37117 · doi:10.1215/00127094-3119739
[23] Damanik, D.; Gorodetski, A.; Liu, Q.-H.; Qu, Y.-H., Transport exponents of Sturmian Hamiltonians, J. Funct. Anal., 269, 5, 1404-1440 (2015) · Zbl 1323.82038 · doi:10.1016/j.jfa.2015.05.018
[24] Damanik, D.; Lukic, M.; Yessen, W., Quantum dynamics of periodic and limit-periodic Jacobi and block Jacobi matrices with applications to some quantum many body problems, Commun. Math. Phys., 337, 3, 1535-1561 (2015) · Zbl 1332.82027 · doi:10.1007/s00220-015-2346-4
[25] Damanik, D.; Fillman, J.; Vance, R., Dynamics of unitary operators, J. Fractal Geom., 1, 4, 391-425 (2014) · Zbl 1321.47076 · doi:10.4171/JFG/12
[26] Damanik, D.; Fillman, J.; Gorodetski, A., Continuum Schrödinger operators associated with aperiodic subshifts, Ann. Henri Poincare, 15, 6, 1123-1144 (2014) · Zbl 1292.81052 · doi:10.1007/s00023-013-0264-6
[27] Derfel, G.; Grabner, P. J.; Vogl, F., Laplace operators on fractals and related functional equations, J. Phys. A, 45, 46, 463001 (2012) · Zbl 1348.35288 · doi:10.1088/1751-8113/45/46/463001
[28] Dunne, G. V., Heat kernels and zeta functions on fractals, J. Phys. A, 45, 37, 374016 (2012) · Zbl 1258.81042 · doi:10.1088/1751-8113/45/37/374016
[29] Durrett, R., Essentials of Stochastic Processes (2012) · Zbl 1244.60001 · doi:10.1007/978-1-4614-3615-7
[30] Englert, F.; Frère, J.-M.; Rooman, M.; Spindel, P., Metric space-time as fixed point of the renormalization group equations on fractal structures, Nucl. Phys. B, 280, 147-180 (1987) · doi:10.1016/0550-3213(87)90142-8
[31] Fan, E.; Khandker, Z.; Strichartz, R. S., Harmonic oscillators on infinite Sierpinski gaskets, Commun. Math. Phys., 287, 1, 351-382 (2009) · Zbl 1176.31017 · doi:10.1007/s00220-008-0633-z
[32] Fontaine, D.; Smith, T.; Teplyaev, A., Resistance of random Sierpiński gaskets, Quantum Graphs and Their Applications, 415, 121-136 (2006) · Zbl 1317.31018
[33] Fukushima, M.; Shima, T., On a spectral analysis for the Sierpiński gasket, Potential Anal., 1, 1, 1-35 (1992) · Zbl 1081.31501 · doi:10.1007/BF00249784
[34] Ghez, J. M.; Wang, Y. Y.; Rammal, R.; Pannetier, B.; Bellissard, J., Band spectrum for an electron on a Sierpinski gasket in a magnetic field, Solid State Commun., 64, 10, 1291-1294 (1987) · doi:10.1016/0038-1098(87)90628-4
[35] Hare, K. E.; Steinhurst, B. A.; Teplyaev, A.; Zhou, D., Disconnected Julia sets and gaps in the spectrum of Laplacians on symmetric finitely ramified fractals, Math. Res. Lett., 19, 3, 537-553 (2012) · Zbl 1271.28005 · doi:10.4310/MRL.2012.v19.n3.a3
[36] Hinz, M.; Kelleher, D. J.; Teplyaev, A., Metrics and spectral triples for Dirichlet and resistance forms, J. Noncommut. Geom., 9, 2, 359-390 (2015) · Zbl 1327.81236 · doi:10.4171/JNCG/195
[37] Ionescu, M.; Rogers, L. G., Complex powers of the Laplacian on affine nested fractals as Calderón-Zygmund operators, Commun. Pure Appl. Anal., 13, 6, 2155-2175 (2014) · Zbl 1303.28012 · doi:10.3934/cpaa.2014.13.2155
[38] Ionescu, M.; Rogers, L. G.; Strichartz, R. S., Pseudo-differential operators on fractals and other metric measure spaces, Rev. Mat. Iberoam., 29, 4, 1159-1190 (2013) · Zbl 1287.35111 · doi:10.4171/RMI/752
[39] Ionescu, M.; Pearse, E. P. J.; Rogers, L. G.; Ruan, H.-J.; Strichartz, R. S., The resolvent kernel for PCF self-similar fractals, Trans. Am. Math. Soc., 362, 8, 4451-4479 (2010) · Zbl 1204.28013 · doi:10.1090/S0002-9947-10-05098-1
[40] Jitomirskaya, S.; Last, Y., Power-law subordinacy and singular spectra. I. Half-line operators, Acta Math., 183, 2, 171-189 (1999) · Zbl 0991.81021 · doi:10.1007/BF02392827
[41] Kelleher, D.; Gupta, N.; Margenot, M.; Marsh, J.; Oakley, W.; Teplyaev, A., Gaps in the spectrum of the Laplacian on 3N-gaskets, Commun. Pure Appl. Anal., 14, 6, 2509-2533 (2015) · Zbl 1327.81211 · doi:10.3934/cpaa.2015.14.2509
[42] Kigami, J.; Lapidus, M. L., Weyl’s problem for the spectral distribution of Laplacians on P.C.F. self-similar fractals, Commun. Math. Phys., 158, 1, 93-125 (1993) · Zbl 0806.35130 · doi:10.1007/BF02097233
[43] Lapidus, M. L.; van Frankenhuijsen, M., Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings (2013) · Zbl 1261.28011
[44] Levy, E., Barak, A., Fisher, A., and Akkermans, E., “Topological properties of Fibonacci quasicrystals: A scattering analysis of Chern numbers,” e-print (2015).
[45] Malozemov, L.; Teplyaev, A., Self-similarity, operators and dynamics, Math. Phys. Anal. Geom., 6, 3, 201-218 (2003) · Zbl 1021.05069 · doi:10.1023/A:1024931603110
[46] Mei, M., Spectra of discrete Schrödinger operators with primitive invertible substitution potentials, J. Math. Phys., 55, 8, 082701 (2014) · Zbl 1302.82112 · doi:10.1063/1.4886535
[47] Meyers, R.; Strichartz, R. S.; Teplyaev, A., Dirichlet forms on the Sierpiński gasket, Pac. J. Math., 217, 1, 149-174 (2004) · Zbl 1067.31011 · doi:10.2140/pjm.2004.217.149
[48] Milnor, J., Dynamics in One Complex Variable, 160 (2006) · Zbl 1085.30002
[49] Okoudjou, K. A.; Saloff-Coste, L.; Teplyaev, A., Weak uncertainty principle for fractals, graphs and metric measure spaces, Trans. Am. Math. Soc., 360, 7, 3857-3873 (2008) · Zbl 1153.28007 · doi:10.1090/S0002-9947-08-04472-3
[50] Rammal, R.; Toulouse, G., Random walks on fractal structures and percolation clusters, J. Phys. Lett., 44, 1, 13-22 (1983) · doi:10.1051/jphyslet:0198300440101300
[51] Reuter, M.; Saueressig, F., Fractal space-times under the microscope: A renormalization group view on Monte Carlo data, J. High Energy Phys., 2011, 12, 1-27 · Zbl 1306.83026 · doi:10.1007/JHEP12(2011)012
[52] Rogers, L. G., Estimates for the resolvent kernel of the Laplacian on P.C.F. self-similar fractals and blowups, Trans. Am. Math. Soc., 364, 3, 1633-1685 (2012) · Zbl 1267.28012 · doi:10.1090/S0002-9947-2011-05551-0
[53] Rogers, L. G.; Strichartz, R. S., Distribution theory on P.C.F. fractals, J. Anal. Math., 112, 137-191 (2010) · Zbl 1219.28011 · doi:10.1007/s11854-010-0027-y
[54] Shima, T., On eigenvalue problems for the random walks on the Sierpiński pre-gaskets, Jpn. J. Ind. Appl. Math., 8, 1, 127-141 (1991) · Zbl 0715.60088 · doi:10.1007/BF03167188
[55] Shima, T., On eigenvalue problems for Laplacians on P.C.F. self-similar sets, Jpn. J. Ind. Appl. Math., 13, 1, 1-23 (1996) · Zbl 0861.58047 · doi:10.1007/BF03167295
[56] Simon, B., Singular spectrum: Recent results and open questions, 507-512 (1995) · Zbl 1052.81517
[57] Strichartz, R. S., Function spaces on fractals, J. Funct. Anal., 198, 1, 43-83 (2003) · Zbl 1023.46034 · doi:10.1016/S0022-1236(02)00035-6
[58] Strichartz, R. S., Laplacians on fractals with spectral gaps have nicer Fourier series, Math. Res. Lett., 12, 2-3, 269-274 (2005) · Zbl 1070.42002 · doi:10.4310/MRL.2005.v12.n2.a12
[59] Strichartz, R. S., A fractal quantum mechanical model with Coulomb potential, Commun. Pure Appl. Anal., 8, 2, 743-755 (2009) · Zbl 1167.28308 · doi:10.3934/cpaa.2009.8.743
[60] Strichartz, R. S.; Teplyaev, A., Spectral analysis on infinite Sierpiński fractafolds, J. Anal. Math., 116, 255-297 (2012) · Zbl 1272.28012 · doi:10.1007/s11854-012-0007-5
[61] Tanese, D.; Gurevich, E.; Baboux, F.; Jacqmin, T.; Lemaître, A.; Galopin, E.; Sagnes, I.; Amo, A.; Bloch, J.; Akkermans, E., Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential, Phys. Rev. Lett., 112, 14, 146404 (2014) · doi:10.1103/PhysRevLett.112.146404
[62] Teplyaev, A., Spectral analysis on infinite Sierpiński gaskets, J. Funct. Anal., 159, 2, 537-567 (1998) · Zbl 0924.58104 · doi:10.1006/jfan.1998.3297
[63] Teplyaev, A., Spectral zeta functions of fractals and the complex dynamics of polynomials, Trans. Am. Math. Soc., 359, 9, 4339-4358 (2007) · Zbl 1129.28010 · doi:10.1090/S0002-9947-07-04150-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.