×

Bidirectional supervision: an effective method to suppress corruption and defection under the third party punishment mechanism of donation games. (English) Zbl 07701064

Summary: Corruption is a serious problem faced by human society, which significantly affects the efficiency of the third party punishment mechanism. Without intervention, fair umpires will gradually evolve into bribed umpires to maximize its own profits, resulting in a double dilemma of corruption-defection. Therefore, it is worth studying how to suppress corruption through effective intervention mechanisms. In this paper, we propose a bidirectional supervision mechanism in which players could also supervise umpires and give up the games if they find their corresponding umpires are unfavourable for themselves. Five parameters control the whole model. Through Monte Carlo simulations, we reveal the effects of these parameters on the results. More importantly, the bidirectional supervision mechanism has a significant effect on suppressing corruption and defection. Our results provide a new perspective for exploring how corruption and defection could be suppressed under the third-party punishment mechanism.

MSC:

91A22 Evolutionary games
91A43 Games involving graphs
91B18 Public goods
Full Text: DOI

References:

[1] Nowak, M. A.; May, R. M., Evolutionary games and spatial chaos, Nature, 359, 826-829 (1992)
[2] Sigmund, K.; Nowak, M. A., Evolutionary game theory, Curr. Biol., 9, R503-R505 (1999)
[3] Javarone, M. A., Statistical Physics and Computational Methods for Evolutionary Game Theory (2018), Springer: Springer Hertfordshire · Zbl 1387.82001
[4] Nowak, M. A., Five rules for the evolution of cooperation, Science, 314, 1560-1563 (2006)
[5] Nowak, M. A.; May, R. M., The spatial dilemmas of evolution, Int. J. Bifurc. Chaos Appl. Sci. Eng., 3, 35-78 (1993) · Zbl 0870.92011
[6] Szabó, G.; Töke, C., Evolutionary prisoner’s dilemma game on a square lattice, Phys. Rev. E, 58, 69-73 (1998)
[7] Perc, M.; Jordan, J. J.; Rand, D. G.; Wang, Z.; Boccaletti, S.; Szolnoki, A., Statistical physics of human cooperation, Phys. Rep., 687, 1-51 (2017) · Zbl 1366.80006
[8] Hertel, G.; Fiedler, K., Affective and cognitive influences in social dilemma game, Eur. J. Soc. Psychol., 24, 1, 131-145 (1994)
[9] Liu, D.; Huang, C.; Dai, Q.; Li, H., Positive correlation between strategy persistence and teaching ability promotes cooperation in evolutionary prisoner’s dilemma games, Physica A, 520, 267-274 (2019) · Zbl 1514.91021
[10] Lee, H. W.; Malik, N.; Mucha, P. J., Evolutionary prisoner’s dilemma games coevolving on adaptive networks, J. Complex Netw., 6, 1-23 (2018)
[11] Takesue, H., Evolutionary prisoner’s dilemma games on the network with punishment and opportunistic partner switching, EPL, 121, 48005 (2018)
[12] Liu, P.; Liu, J., Cooperation in the prisoner’s dilemma game on tunable community networks, Physica A, 472, 156-163 (2017) · Zbl 1400.91115
[13] Zhang, W.; Choi, C. W.; Li, Y. S.; Xu, C.; Hui, P. M., Co-evolving prisoner’s dilemma: performance indicators and analytic approaches, Physica A, 468, 183-194 (2017)
[14] Javarone, M. A., Statistical physics of the spatial prisoner’s dilemma with memory-aware agents, Eur. Phys. J. B, 89, 42 (2016)
[15] Tanimoto, J.; Kishimoto, N., Network reciprocity created in prisoner’s dilemma games by coupling two mechanisms, Phys. Rev. E, 91, 042106 (2015)
[16] Chan, C. H.; Yin, H.; Hui, P. M.; Zheng, D. F., Evolution of cooperation in well-mixed \(n\)-person snowdrift games, Physica A, 387, 2919-2925 (2008)
[17] Chan, N. W.H.; Xu, C.; Tey, S. K.; Yap, Y. J.; Hui, P. M., Evolutionary snowdrift game incorporating costly punishment in structured populations, Physica A, 392, 168-176 (2013)
[18] Chen, G.; Qiu, T.; Wu, X. R., Clustering effect on the evolution of cooperation in a herding snowdrift game, Chin. Phys. Lett., 26, 060201 (2009)
[19] Chen, X.; Wang, L., Effects of cost threshold and noise in spatial snowdrift games with fixed multi-person interactions, EPL, 90, 38003 (2010)
[20] Doebeli, M.; Hauert, C., Models of cooperation based on prisoner’s dilemma and snowdrift game, Ecol. Lett., 8, 748-766 (2005)
[21] Du, W.; Cao, X.; Hu, M.; Wang, W., Asymmetric cost in snowdrift game on scale-free networks, EPL, 87, 60004 (2009)
[22] Fu, F.; Nowak, M. A.; Hauert, C., Invasion and expansion of cooperators in lattice populations: Prisoner’s dilemma vs. snowdrift games, J. Theor. Biol., 266, 358-366 (2010) · Zbl 1407.91043
[23] Pacheco, J. M.; Santos, F. C.; Souza, M. O.; Skyrms, B., Evolutionary dynamics of collective action in \(n\)-person stag hunt dilemmas, Proc. R. Soc. Lond. B, 276, 315-321 (2009)
[24] Pestelacci, E.; Tomassini, M., Cooperation in co-evolving networks: the prisoner’s dilemma and stag-hunt games, Lec. Not. Comput. Sci., 5199, 539-548 (2008)
[25] Skyrms, B., Stag-Hunt Game and the Evolution of Social Structure (2004), Cambridge University Press: Cambridge University Press Cambridge, U.K.
[26] Starnini, M.; Sánchez, A.; Poncela, J.; Moreno, Y., Coordination and growth: the Stag Hunt game on evolutionary networks, J. Stat. Mech., 2011, P05008 (2011)
[27] Ahmed, E.; Elgazzar, A. S., On coordination and continuous hawk-dove games on small-world networks, Eur. Phys. J. B, 18, 159-162 (2000)
[28] Cassar, A., Coordination and cooperation in local, random and small world networks: exerimental evidence, Games Econ. Behav., 58, 209-230 (2007) · Zbl 1168.91329
[29] Arapaki, E., Uncertainty of cooperation in random scale-free networks, Physica A, 388, 2757-2761 (2009)
[30] Assaf, M.; Mobilia, M., Metastability and anomalous fixation in evolutionary games on scale-free networks, Phys. Rev. Lett., 109, 188701 (2012)
[31] Zhang, L.; Huang, C.; Li, H.; Dai, Q.; Yang, J., Migration based on historical payoffs promotes cooperation in continuous two-dimensional space, EPL, 134, 68001 (2021)
[32] Zhang, L.; Huang, C.; Li, H.; Dai, Q.; Yang, J., Effects of directional migration for pursuit of profitable circumstances in evolutionary games, Chaos Solitons Fractals, 144, 110709 (2021) · Zbl 1498.91071
[33] Huang, C.; Han, W.; Li, H.; Cheng, H.; Dai, Q.; Yang, J., Public cooperation in two-layer networks with asymmetric interaction and learning environments, Appl. Math. Comput., 340, 305-313 (2019) · Zbl 1429.91087
[34] Battiston, F.; Perc, M.; Latora, V., Determinants of public cooperation in multiplex networks, New J. Phys, 19, 073017 (2017)
[35] Shi, Z.; Wei, W.; Perc, M.; Li, B.; Zheng, Z., Coupling group selection and network reciprocity in social dilemmas through multilayer networks, Appl. Math. Comput., 418, 126835 (2022) · Zbl 1510.91057
[36] Zhang, L.; Zhang, L.; Huang, C., Defectors in bad circumstances possessing higher reputation can promote cooperation, Chaos, 32, 4, 043114 (2022)
[37] Pan, Q.; Wang, L.; He, M., Social dilemma based on reputation and successive behavior, Appl. Math. Comput., 384, 125358 (2020) · Zbl 1508.91059
[38] Zhu, W.; Pan, Q.; He, M., Exposure-based reputation mechanism promotes the evolution of cooperation, Chaos Solitons Fractals, 160, 112205 (2022)
[39] Shi, Z.; Wei, W.; Feng, X.; Li, X.; Zheng, Z., Dynamic aspiration based on win-stay-lose-learn rule in spatial prisoner’s dilemma game, PLoS ONE, 16, e0244814 (2021)
[40] Shi, Z.; Wei, W.; Feng, X.; Zhang, R.; Zheng, Z., Effects of dynamic-win-stay-lose-learn model with voluntary participation in social dilemma, Chaos Solitons Fractals, 151, 111269 (2021)
[41] Shen, C.; Jusup, M.; Shi, L.; Wang, Z.; Perc, M.; Holme, P., Exit rights open complex pathways to cooperation, J. R. Soc. Interface, 18, 20200777 (2021)
[42] Li, X.; Wang, H.; Hao, G.; Xia, C., The mechanism of alliance promotes cooperation in the spatial multi-games, Phys. Lett. A, 384, 126414 (2020)
[43] Li, X.; Hao, G.; Zhang, Z.; Xia, C., Evolution of cooperation in heterogeneously stochastic interactions, Chaos Solitons Fractals, 150, 111186 (2021) · Zbl 1498.91059
[44] Li, X.; Han, W.; Yang, W.; Wang, J.; Xia, C.; Li, H.-j.; Shi, Y., Impact of resource-based conditional interaction on cooperation in spatial social dilemmas, Physica A, 594, 127055 (2022)
[45] Brüne, M.; Scheele, D.; Heinisch, C.; Tas, C.; Wischniewski, J., Empathy moderates the effect of repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex on costly punishment, PLoS ONE, 7, e44747 (2012)
[46] Chen, X.; Szolnoki, A.; Perc, M., Probabilistic sharing solves the problem of costly punishment, New J. Phys., 16, 083016 (2014)
[47] Cubitt, R. P.; Drouvelis, M.; Gächter, S., Framing and free riding: emotional responses and punishment in social dilemma games, Exp. Econ., 14, 254-272 (2011)
[48] Deng, K.; Li, Z.; Kurokawa, S.; Chu, T., Rare but severe concerted punishment that favors cooperation, Theor. Popul. Biol., 81, 284-291 (2012) · Zbl 1418.91127
[49] Yang, H.; Chen, X., Promoting cooperation by punishing minority, Appl. Math. Comput., 316, 460-466 (2018) · Zbl 1427.91047
[50] Wang, S.; Liu, L.; Chen, X., Tax-based pure punishment and reward in the public goods game, Phys. Lett. A, 386, 126965 (2021) · Zbl 1479.91040
[51] Gao, L.; Pan, Q.; He, M., Effects of defensive cooperation strategy on the evolution of cooperation in social dilemma, Appl. Math. Comput., 399, 126047 (2021) · Zbl 1508.91049
[52] Pan, Q.; Wang, Y.; Chen, Q.; Gao, L.; He, M., Effects of quasi-defection strategy on cooperation evolution in social dilemma, Phys. Lett. A, 439, 128138 (2022) · Zbl 1497.91059
[53] Pan, Q.; Wang, Y.; He, M., Impacts of special cooperation strategy with reward and punishment mechanism on cooperation evolution, Chaos Solitons Fractals, 162, 112432 (2022)
[54] Roos, P.; Gelfand, M.; Nau, D.; Carr, R., High strength-of-ties and low mobility enable the evolution of third-party punishment, Proc. R. Soc. B, 281, 1776, 20132661 (2014)
[55] Wu, Y.; Zhang, B.; Zhang, S., Probabilistic reward or punishment promotes cooperation in evolutionary games, Chaos Solitons Fractals, 103, 289-293 (2017) · Zbl 1376.91035
[56] Fang, Y.; Benko, T. P.; Perc, M.; Xu, H.; Tan, Q., Synergistic third-party rewarding and punishment in the public goods game, Proc. R. Soc. A, 475, 2227, 20190349 (2019) · Zbl 1472.90024
[57] Holmes, L., Corruption: A Very Short introduction, Vol. 426 (2015), Oxford University Press, USA · Zbl 1401.00002
[58] Verma, P.; Sengupta, S., Bribe and punishment: an evolutionary game-theoretic analysis of bribery, PLoS ONE, 10, e0133441 (2015)
[59] Lee, J. H.; Sigmund, K.; Dieckmann, U.; Iwasa, Y., Games of corruption: how to suppress illegal logging, J. Theor. Biol., 367, 1-13 (2015) · Zbl 1412.91008
[60] Lee, J. H.; Iwasa, Y.; Dieckmann, U.; Sigmund, K., Social evolution leads to persistent corruption, Proc. Natl. Acad. Sci., 116, 27, 13276-13281 (2019)
[61] Shi, Z.; Wei, W.; Li, B.; Li, C.; Li, H.; Zheng, Z., Two-layer network model of public goods games with intervention and corruption, Chaos, 32, 6, 063138 (2022)
[62] Wang, Z.; Wang, L.; Szolnoki, A.; Perc, M., Evolutionary games on multilayer networks: a colloquium, Eur. Phys. J. B, 88, 5, 124 (2015)
[63] Szabó, G.; Töke, C., Evolutionary prisoner’s dilemma game on a square lattice, Phys. Rev. E, 58, 69-73 (1998)
[64] Perc, M., Coherence resonance in the spatial prisoner’s dilemma game, New J. Phys., 8, 022 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.