×

Arithmetic properties and asymptotic formulae for \(\sigma_o \mathrm{mex}(n)\) and \(\sigma_e \mathrm{mex}(n)\). (English) Zbl 07920322

A partition \(\lambda\) of a positive integer \(n\) is a weakly decreasing sequence of positive integers \(\lambda_1\geq\lambda_2\geq\cdots\geq\lambda_r\) such that \(\sum_{i=1}^r\lambda_i=n\). The numbers \(\lambda_i\) are called the parts of the partition \(\lambda\). G. E. Andrews and D. Newman [Ann. Comb. 23, No. 2, 249–254 (2019; Zbl 1458.11011)] introduced the notion of minimal excludant of partitions. For a given partition \(\lambda\), the minimal excludant of \(\lambda\) is the least positive integer missing from \(\lambda\). Let \(\operatorname{mex}(\lambda)\) denote the minimal excludant of the partition \(\lambda\). Andrews and Newmann further considered another arithmetic function \(\sigma\operatorname{mex}(n)\), which is defined by \[ \sigma\operatorname{mex}(n)=\sum_{\lambda\in\mathcal{P}(n)}\operatorname{mex}(\lambda), \] where \(\mathcal{P}(n)\) denotes the set of all partitions of \(n\). Later, N. D. Baruah, S. C. Bhoria, P. Eyyunni and B. Maji [Ramanujan J. 62, No. 4, 1045–1067 (2023; Zbl 07784980)] refined the function \(\sigma\operatorname{mex}(n)\) by considering the sum of odd and even minimal excludants separately. More specifically, for any \(n\geq1\), they defined the following two arithmetic functions: \begin{align*} \sigma_o\operatorname{mex}(n) &:=\sum_{\substack{\lambda\in\mathcal{P}(n)\\ \operatorname{mex}(\lambda) \equiv1\bmod{2}}}\operatorname{mex}(\lambda),\\ \sigma_e\operatorname{mex}(n) &:=\sum_{\substack{\lambda\in\mathcal{P}(n)\\ \operatorname{mex}(\lambda) \equiv0\bmod{2}}}\operatorname{mex}(\lambda). \end{align*} Baruah et al. also established three congruences modulo \(4\) and \(8\) for \(\sigma_o\operatorname{mex}(n)\) and \(\sigma_e\operatorname{mex}(n)\), namely, for any \(n\geq0\), \begin{align*} \sigma_o\operatorname{mex}(2n+1) &\equiv0\pmod{4},\\ \sigma_o\operatorname{mex}(4n+1) &\equiv0\pmod{8},\\ \sigma_e\operatorname{mex}(4n) &\equiv0\pmod{4}. \end{align*}
In the paper under review, the authors first prove the following two congruences modulo \(4\) for \(\sigma_e\operatorname{mex}(n)\) by utilizing some \(q\)-series identities: \begin{align*} \sigma_e\operatorname{mex}(10n+6) &\equiv0\pmod{4},\\ \sigma_e\operatorname{mex}(10n+8) &\equiv0\pmod{4}. \end{align*} They next establish some infinite families of congruences modulo \(4\) and \(8\) for \(\sigma_o\operatorname{mex}(n)\) and \(\sigma_e\operatorname{mex}(n)\). For example, for any \(n\geq0\), \[ \sigma_e\operatorname{mex}{\left(2p^2n+kp+\dfrac{p^2-1}{12}\right)}\equiv0\pmod{4}, \] where \(p\) is a prime number satisfying \(p\equiv5,7,11\pmod{12}\), \(k\) is odd and \(1\leq k<p\).
Finally, the authors deduce the following asymptotic formulas for \(\sigma_o\operatorname{mex}(n)\) and \(\sigma_e\operatorname{mex}(n)\) by applying Ingham s Tauberian theorem: \[ \sigma_o\operatorname{mex}(n)\sim\sigma_e\operatorname{mex}(n)\sim\dfrac{1}{8\sqrt[4]{6n^3}} \exp{\left(\pi\sqrt{\dfrac{2n}{3}}\right)}. \]

MSC:

11P83 Partitions; congruences and congruential restrictions
11N37 Asymptotic results on arithmetic functions

References:

[1] Andrews, GE; Newman, D., Partitions and the minimal excludant, Ann. Comb., 23, 249-254, 2019 · Zbl 1458.11011 · doi:10.1007/s00026-019-00427-w
[2] Andrews, G.E., Newman, D.: The minimal excludant in integer partitions. J. Integer Seq. 23, 20.2.3 (2020) · Zbl 1441.11265
[3] Ballantine, C.; Merca, M., The minimal excludant and colored partitions, Sém. Lothar. Combin., 84B, 23, 2020 · Zbl 1447.05021
[4] Barman, R.; Singh, A., Mex-related partition functions of Andrews and Newman, J. Integer Seq., 24, 21.6.3, 2021 · Zbl 1471.11258
[5] Barman, R.; Singh, A., On Mex-related partition functions of Andrews and Newman, Res. Number Theory, 7, 53, 2021 · Zbl 1478.11121 · doi:10.1007/s40993-021-00284-8
[6] Baruah, ND; Bhoria, SC; Eyyunni, P.; Maji, B., A refinement of a result of Andrews and Newman on the sum of minimal excludants, Ramanujan J., 62, 1045-1067, 2023 · Zbl 07784980 · doi:10.1007/s11139-023-00738-w
[7] Berndt, BC, Ramanujan’s Notebooks. Part III, 1991, New York: Springer, New York · Zbl 0733.11001 · doi:10.1007/978-1-4612-0965-2
[8] Berndt, BC, Number Theory in the Spirit of Ramanujan, 2006, Providence, RI: American Mathematical Society, Providence, RI · Zbl 1117.11001 · doi:10.1090/stml/034
[9] Berndt, BC; Kim, B., Asymptotic expansions of certain partial theta functions, Proc. Am. Math. Soc., 139, 3779-3788, 2011 · Zbl 1272.11057 · doi:10.1090/S0002-9939-2011-11062-1
[10] Chakraborty, K.; Ray, C., Distribution of generalized mex-related integer partitions, Hardy-Ramanujan J., 43, 122-128, 2021 · Zbl 1469.11407
[11] Cooper, S.; Hirschhorn, MD; Lewis, R., Powers of Euler’s product and related identities, Ramanujan J., 4, 137-155, 2000 · Zbl 0989.11053 · doi:10.1023/A:1009827103485
[12] da Silva, R.; Sellers, JA, Parity considerations for mex-related partition functions of Andrews and Newman, J. Integer Seq., 23, 20, 2020 · Zbl 1480.11131
[13] Du, JQD; Tang, D., A conjecture of Baruah, Bhoria, Eyyunni and Maji on certain refinement of the sum of minimal excludants, Bult. Aust. Math. Soc., 109, 2, 276-287, 2024 · Zbl 07828709 · doi:10.1017/S0004972723000709
[14] Fraenkel, A.S., Peled, U.: Harnessing the unwieldy MEX function. In: Games of No Chance 4, Math. Sci. Res. Inst. Publ., Cambridge University Press, New York 63, 77-94 (2015) · Zbl 1405.91081
[15] Grabner, PJ; Knopfmacher, A., Analysis of some new partition statistics, Ramanujan J., 12, 439-454, 2006 · Zbl 1113.05012 · doi:10.1007/s11139-006-0153-4
[16] Hardy, GH; Ramanujan, S., Asymptotic formulae in combinatory analysis, Proc. Lond. Math. Soc., 17, 75-115, 1918 · JFM 46.0198.04 · doi:10.1112/plms/s2-17.1.75
[17] Hirschhorn, MD, The Power of \(q\), 2017, Berlin: Springer, Berlin · Zbl 1456.11001
[18] Hopkins, B.; Sellers, JA; Stanton, D., Dyson’s crank and the mex of integer partitions, J. Combin. Theory Ser. A, 185, 2022 · Zbl 1476.05016 · doi:10.1016/j.jcta.2021.105523
[19] Hopkins, B.; Sellers, JA; Yee, AJ, Cobinatorial perspectives on the crank and mex partition statistics, Electron. J. Combin., 29, P2.11, 2022 · Zbl 1523.11183 · doi:10.37236/10776
[20] Ingham, AE, A Tauberian theorem for partitions, Ann. Math., 42, 1075-1090, 1941 · Zbl 0063.02973 · doi:10.2307/1970462
[21] Kang, J.; Li, R.; Wang, AYZ, A new refinement of Fine’s partition theorem, Bull. Aust. Math. Soc., 104, 353-361, 2021 · Zbl 1483.05009 · doi:10.1017/S0004972721000204
[22] Kang, J.; Li, R.; Wang, AYZ, Partition identities related to the minimal excludant, Discrete Math., 346, 2023 · Zbl 1516.11098 · doi:10.1016/j.disc.2022.113302
[23] Kaur, PS; Bhoria, SC; Eyyunni, P.; Maji, B., Minimal excludant over partitions into distinct parts, Int. J. Number Theory, 18, 2015-2028, 2022 · Zbl 1498.11206 · doi:10.1142/S1793042122501032
[24] Ono, K., The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and \(q\)-series, CBMS Regional Conference Series in Mathematics, 2004, Providence, RI: American Mathematical Society, Providence, RI · Zbl 1119.11026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.