×

The continuous Redner-Ben-Avraham-Kahng coagulation system: well-posedness and asymptotic behaviour. (English) Zbl 1521.45007

The authors study the following continuous model of a coagulation: \[ \frac{\partial \phi}{\partial t}=\int_{0}^\infty a(\psi+\rho,\rho) \phi(\psi+\rho,t)\phi(\rho,t)d\rho -\int_{0}^\infty a(\psi,\rho) \phi(\psi,t)\phi(\rho,t)d\rho, \] with initial condition \[ \phi(\psi,0)=\phi^{in}(\psi)\geq 0, \] where \(\phi(\sigma, t)\) denotes the concentration of particles of volume \(\sigma\in [0,\infty)\) at time \(t \geq 0\). The non-negative quantity \(a(\psi,\rho)\) represents the coagulation rate at which particles of volume \(\psi\) and particles of volume \(\rho\) interact to produce particles of volume \(|\psi-\rho|\).
The main goal of the paper is to obtain sufficient conditions for existence and uniqueness of solutions for the above model.

MSC:

45K05 Integro-partial differential equations
45M05 Asymptotics of solutions to integral equations
45G10 Other nonlinear integral equations
47G20 Integro-differential operators
34K30 Functional-differential equations in abstract spaces
Full Text: DOI

References:

[1] J. M. J. Ball Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness and density conservation, J. Statist. Phys., 61, 203-234 (1990) · Zbl 1217.82050 · doi:10.1007/BF01013961
[2] P. K. Barik and A. K. Giri, Global classical solutions to the continuous coagulation equation with collisional breakage, Z. Angew. Math. Phys., 71 (2020), Paper No. 38, 23 pp. · Zbl 1443.45010
[3] P. K. A. K. Ph. Barik Giri Laurençot, Mass-conserving solutions to the Smoluchowski coagulation equation with singular kernel, Proc. Roy. Soc. Edinburgh Sect. A, 150, 1805-1825 (2020) · Zbl 1474.45061 · doi:10.1017/prm.2018.158
[4] F. P. J. T. R. da Costa Pinto Sasportes, The Redner-Ben-Avraham-Kahng cluster system, São Paulo J. Math. Sci., 6, 171-201 (2012) · Zbl 1300.34122 · doi:10.11606/issn.2316-9028.v6i2p171-201
[5] F. P. J. T. R. da Costa Pinto Sasportes, The Redner-Ben-Avraham-Kahng coagulation system with constant coefficients: The finite dimensional case, Z. Angew. Math. Phys., 66, 1375-1385 (2015) · Zbl 1327.34095 · doi:10.1007/s00033-014-0485-7
[6] A. K. Ph. G. Giri Laurençot Warnecke, Weak solutions to the continuous coagulation with multiple fragmentation, Nonlinear Anal., 75, 2199-2208 (2012) · Zbl 1236.35017 · doi:10.1016/j.na.2011.10.021
[7] I. P. L. S. Ispolatov Krapivsky Redner, War: The dynamics of vicious civilizations, Phys. Rev. E, 54, 1274-1289 (1996) · doi:10.1103/PhysRevE.54.1274
[8] M. Ph. D. Lachowicz Laurençot Wrzosek, On the Oort-Hulst-Safronov coagulation equation and its relation to the Smoluchoski equation, SIAM J. Math. Anal., 34, 1399-1421 (2003) · Zbl 1047.45006 · doi:10.1137/S0036141002414470
[9] Ph. Laurençot, On a class of continuous coagulation-fragmentation equations, J. Differ. Equ., 167, 245-274 (2000) · Zbl 0978.35083 · doi:10.1006/jdeq.2000.3809
[10] Ph. Laurençot, Weak compactness techniques and coagulation equations, Evolutionary Equations with Applications in Natural Sciences, Lecture Notes in Math., Springer, Cham, 2126, 199-253 (2015) · Zbl 1323.35193 · doi:10.1007/978-3-319-11322-7_5
[11] Ph. Laurençot and S. Mischler, On coalescence equations and related models, Modeling and Computational Methods for Kinetic Equations, Model. Simul. Sci. Eng. Technol., (2004), 321-356. · Zbl 1105.82027
[12] H. Müller, Zur allgemeinen Theorie der raschen Koagulation, Kolloidchemische Beihefte, 27, 223-250 (1928)
[13] S. D. B. Redner Ben-Avraham Kahng, Kinetics of ’cluster eating’, J. Phys. A Math. Gen., 20, 1231-1238 (1981) · doi:10.1088/0305-4470/20/5/031
[14] M. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösung, Zeitschrift für Physik. Chemie, 92, 129-168 (1917)
[15] I. W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11, 627-648 (1989) · Zbl 0683.45006 · doi:10.1002/mma.1670110505
[16] I. W. Stewart, A uniqueness theorem for the coagulation-fragmentation equation, Math. Proc. Camb. Phil. Soc., 107, 573-578 (1990) · Zbl 0708.45010 · doi:10.1017/S0305004100068821
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.