×

A new thermodynamically compatible finite volume scheme for magnetohydrodynamics. (English) Zbl 07670867

Summary: In this paper we propose a novel thermodynamically compatible finite volume scheme for the numerical solution of the equations of magnetohydrodynamics (MHD) in one and two space dimensions. As shown by Godunov in 1972, the MHD system can be written as overdetermined symmetric hyperbolic and thermodynamically compatible (SHTC) system. More precisely, the MHD equations are symmetric hyperbolic in the sense of Friedrichs and satisfy the first and second principles of thermodynamics. In a more recent work on SHTC systems [E. Romenski, Math. Comput. Modelling, 28 (1998), pp. 115-130], the entropy density is a primary evolution variable, and total energy conservation can be shown to be a consequence that is obtained after a judicious linear combination of all other evolution equations. The objective of this paper is to mimic the SHTC framework also on the discrete level by directly discretizing the entropy inequality, instead of the total energy conservation law, while total energy conservation is obtained via an appropriate linear combination as a consequence of the thermodynamically compatible discretization of all other evolution equations. As such, the proposed finite volume scheme satisfies a discrete cell entropy inequality by construction and can be proven to be nonlinearly stable in the energy norm due to the discrete energy conservation. In multiple space dimensions the divergence-free condition of the magnetic field is taken into account via a new thermodynamically compatible generalized Lagrangian multiplier (GLM) divergence cleaning approach. The fundamental properties of the scheme proposed in this paper are mathematically rigorously proven. The new method is applied to some standard MHD benchmark problems in one and two space dimensions, obtaining good results in all cases.

MSC:

65-XX Numerical analysis
35L40 First-order hyperbolic systems
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs

Software:

LIMbook; RIEMANN

References:

[1] Abgrall, R., A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes, J. Comput. Phys., 372 (2018), pp. 640-666. · Zbl 1415.76442
[2] Abgrall, R., Bacigaluppi, P., and Tokareva, S., A high-order nonconservative approach for hyperbolic equations in fluid dynamics, Comput. Fluids, 169 (2018), pp. 10-22. · Zbl 1410.76277
[3] Balsara, D., Second-order accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl. Ser., 151 (2004), pp. 149-184.
[4] Balsara, D., Multidimensional HLLE Riemann solver: Application to Euler and magnetohydrodynamic flows, J. Comput. Phys., 229 (2010), pp. 1970-1993. · Zbl 1303.76140
[5] Balsara, D. and Dumbser, M., Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers, J. Comput. Phys., 299 (2015), pp. 687-715. · Zbl 1351.76092
[6] Balsara, D. and Spicer, D., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149 (1999), pp. 270-292. · Zbl 0936.76051
[7] Brugnano, L. and Iavernaro, F., Line Integral Methods for Conservative Problems, CRC Press, Boca Raton, FL, 2016. · Zbl 1335.65097
[8] Brugnano, L. and Iavernaro, F., Line integral solution of differential problems, Axioms, 7 (2018), p. 36. · Zbl 1432.65181
[9] Busto, S., Dumbser, M., Escalante, C., Gavrilyuk, S., and Favrie, N., On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems, J. Sci. Comput., 87 (2021), 48. · Zbl 1465.76060
[10] Busto, S., Dumbser, M., Gavrilyuk, S., and Ivanova, K., On thermodynamically compatible finite volume methods and path-conservative ADER discontinuous Galerkin schemes for turbulent shallow water flows, J. Sci. Comput., 88 (2021), 28. · Zbl 1501.65047
[11] Busto, S., Dumbser, M., Peshkov, I., and Romenski, E., On thermodynamically compatible finite volume schemes for continuum mechanics, SIAM J. Sci. Comput., 44 (2022), pp. A1723-A1751, doi:10.1137/21M1417508. · Zbl 07556268
[12] Busto, S., Río-Martín, L., Vázquez-Cendón, M., and Dumbser, M., A semi-implicit hybrid finite volume/finite element scheme for all Mach number flows on staggered unstructured meshes, Appl. Math. Comp., 402 (2021), 126117. · Zbl 1510.76082
[13] Castro, M., Gallardo, J., and Parés, C., High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems, Math. Comp., 75 (2006), pp. 1103-1134. · Zbl 1096.65082
[14] Castro, M. J., Fjordholm, U. S., Mishra, S., and Parés, C., Entropy conservative and entropy stable schemes for nonconservative hyperbolic systems, SIAM J. Numer. Anal., 51 (2013), pp. 1371-1391, doi:10.1137/110845379. · Zbl 1317.65167
[15] Chandrashekar, P. and Klingenberg, C., Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes, SIAM J. Numer. Anal., 54 (2016), pp. 1313-1340, doi:10.1137/15M1013626. · Zbl 1381.76213
[16] Cheng, T. and Shu, C., Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. Comput. Phys., 345 (2017), pp. 427-461. · Zbl 1380.65253
[17] Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., and Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175 (2002), pp. 645-673. · Zbl 1059.76040
[18] Derigs, D., Winters, A. R., Gassner, G., Walch, S., and Bohm, M., Ideal GLM-MHD: About the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations, J. Comput. Phys., 364 (2018), pp. 420-467. · Zbl 1392.76037
[19] Dumbser, M., Balsara, D., Tavelli, M., and Fambri, F., A divergence-free semi-implicit finite volume scheme for ideal, viscous and resistive magnetohydrodynamics, Internat. J. Numer. Methods Fluids, 89 (2019), pp. 16-42.
[20] Dumbser, M. and Toro, E., On universal Osher-type schemes for general nonlinear hyperbolic conservation laws, Commun. Comput. Phys., 10 (2011), pp. 635-671. · Zbl 1373.76125
[21] Dumbser, M. and Toro, E., A simple extension of the Osher-Riemann solver to non-conservative hyperbolic systems, J. Sci. Comput., 48 (2011), pp. 70-88. · Zbl 1220.65110
[22] Falle, S., Rarefaction shocks, shock errors and low order of accuracy in ZEUS, Astrophys. J., 577 (2002), pp. L123-L126.
[23] Falle, S. and Komissarov, S., On the inadmissibility of non-evolutionary shocks, J. Plasma Phys., 65 (2001), pp. 29-58.
[24] Fjordholm, U. and Mishra, S., Accurate numerical discretizations of non-conservative hyperbolic systems, ESAIM Math. Model. Numer. Anal., 46 (2012), pp. 187-206. · Zbl 1272.65064
[25] Fjordholm, U. S., Mishra, S., and Tadmor, E., Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws, SIAM J. Numer. Anal., 50 (2012), pp. 544-573, doi:10.1137/110836961. · Zbl 1252.65150
[26] Friedrichs, K., Symmetric positive linear differential equations, Comm. Pure Appl. Math., 11 (1958), pp. 333-418. · Zbl 0083.31802
[27] Friedrichs, K. and Lax, P., Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. USA, 68 (1971), pp. 1686-1688. · Zbl 0229.35061
[28] Gassner, G., Winters, A., and Kopriva, D., A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations, Appl. Math. Comput., 272 (2016), pp. 291-308. · Zbl 1410.65393
[29] Godunov, S., An interesting class of quasilinear systems, Dokl. Akad. Nauk SSSR, 139 (1961), pp. 521-523. · Zbl 0125.06002
[30] Godunov, S., Symmetric form of the equations of magnetohydrodynamics, Numer. Methods Mech. Contin. Media, 3 (1972), pp. 26-31.
[31] Godunov, S. and Romenski, E., Nonstationary equations of the nonlinear theory of elasticity in Euler coordinates, J. Appl. Mech. Tech. Phys., 13 (1972), pp. 868-885.
[32] Godunov, S. and Romenski, E., Elements of Continuum Mechanics and Conservation Laws, Kluwer Academic/Plenum Publishers, 2003. · Zbl 1031.74004
[33] Godunov, S. K., Thermodynamic formalization of the fluid dynamics equations for a charged dielectric in an electromagnetic field, Comput. Math. Math. Phys., 52 (2012), pp. 787-799. · Zbl 1274.35285
[34] Hennemann, S., Rueda-Ramírez, A., Hindenlang, F., and Gassner, G., A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations, J. Comput. Phys., 426 (2021), 109935. · Zbl 07510051
[35] Jiang, G. and Wu, C., A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 150 (1999), pp. 561-594. · Zbl 0937.76051
[36] Liu, Y., Shu, C., and Zhang, M., Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes, J. Comput. Phys., 354 (2018), pp. 163-178. · Zbl 1380.76162
[37] Munz, C., Omnes, P., Schneider, R., Sonnendrücker, E., and Voss, U., Divergence correction techniques for Maxwelll solvers based on a hyperbolic model, J. Comput. Phys., 161 (2000), pp. 484-511. · Zbl 0970.78010
[38] Parés, C., Numerical methods for nonconservative hyperbolic systems: A theoretical framework, SIAM J. Numer. Anal., 44 (2006), pp. 300-321, doi:10.1137/050628052. · Zbl 1130.65089
[39] Ray, D. and Chandrashekar, P., An entropy stable finite volume scheme for the two dimensional Navier-Stokes equations on triangular grids, Appl. Math. Comput., 314 (2017), pp. 257-286. · Zbl 1426.76414
[40] Ray, D., Chandrashekar, P., Fjordholm, U. S., and Mishra, S., Entropy stable scheme on two-dimensional unstructured grids for Euler equations, Commun. Comput. Phys., 19 (2016), pp. 1111-1140. · Zbl 1373.76143
[41] Romenski, E., Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics, Math. Comput. Modelling, 28 (1998), pp. 115-130. · Zbl 1076.74501
[42] Romenski, E., Drikakis, D., and Toro, E., Conservative models and numerical methods for compressible two-phase flow, J. Sci. Comput., 42 (2010), pp. 68-95. · Zbl 1203.76095
[43] Romenski, E., Peshkov, I., Dumbser, M., and Fambri, F., A new continuum model for general relativistic viscous heat-conducting media, Philos Trans. R. Soc. A, 378 (2020), 20190175. · Zbl 1462.82032
[44] Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws I, Math. Comput., 49 (1987), pp. 91-103. · Zbl 0641.65068
[45] Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, 2009. · Zbl 1227.76006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.