×

Abstract Volterra integrodifferential equations with applications to parabolic models with memory. (English) Zbl 1386.35420

The paper is concerned with the integrodifferential problem \[ \begin{cases} u'=Au+\displaystyle\int_0^t g(t-s,u(s))\,ds+f(t,u(t)),\,\,t>0,\\ u(0)=u_0\in D(A), \end{cases}{(1)} \] where \(A:D(A)\subset X_0\to X_0\) is a linear operator such that \(-A\) is a sectorial operator, \(X_0\) is a Banach space, and \(g\) and \(f\) are functions satisfying some assumptions. The authors investigate the existence, uniqueness, regularity, continuous dependence on the initial data, existence of a unique continuation and a blow-up alternative for an \(\varepsilon\)-regular mild solution of \((1)\). Some applications of the obtained results to Navier-Stokes equations with memory, reaction-diffusion equations with memory, and a strongly damped plate equation with memory are finally presented.

MSC:

35R09 Integro-partial differential equations
45D05 Volterra integral equations
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Aassila, M., Cavalcanti, M.M., Soriano, J.A.: Asymtptotic stability and energy decay rates for solutions of the wave equations with memory in star-shaped domain. SIAM J. Control Optim. 38(5), 1581-1602 (2000) · Zbl 0985.35008 · doi:10.1137/S0363012998344981
[2] Adams, R.A.: Sobolev spaces. In: Pure and Applied Mathematics, vol. 65. Academic Press, New York, London (1975) · Zbl 0314.46030
[3] Amann, H.: Linear and quasilinear parabolic problems. Volume I: Abstract linear theory. In: Monographs in Mathematics, vol. 89. Birkhäuser, Boston (1995) · Zbl 0819.35001
[4] Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. Schmeisser/Triebel. Funct. Spaces Differ. Oper. Nonlinear Anal. Teubner Texte zur Mathematik 133, 9-126 (1993) · Zbl 0810.35037
[5] Arrieta, J.M., Carvalho, A.N.: Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations. Trans. Am. Math. Soc. 352, 285-310 (1999) · Zbl 0940.35119 · doi:10.1090/S0002-9947-99-02528-3
[6] Arrieta, J.M., Carvalho, A.N., Rodríguez-Bernal, A.: Parabolic problems with nonlinear boundary conditions and critical nonlinearities. J. Differ. Equ. 156, 376-406 (1999) · Zbl 0938.35077 · doi:10.1006/jdeq.1998.3612
[7] Barbu, V., Sritharan, S.: Navier-Stokes equation with hereditary viscosity. Z. Angew. Math. Phys. 54, 449-461 (2003) · Zbl 1040.35056 · doi:10.1007/s00033-003-1087-y
[8] Brezis, H., Cazenave, T.: A nonlinear heat equation with singular initial data. J. Anal. Math. 68, 277-304 (1996) · Zbl 0868.35058 · doi:10.1007/BF02790212
[9] Caicedo, A., Viana, A.: A diffusive logistic equation with memory in Bessel potential spaces. Bull. Aust. Math. Soc. 92(2), 251-258 (2015) · Zbl 1322.35152 · doi:10.1017/S0004972715000581
[10] Caraballo, T., Real, J.: Attractors for 2D-Navier-Stokes models with delays. J. Differ. Equ. 205, 271-297 (2004) · Zbl 1068.35088 · doi:10.1016/j.jde.2004.04.012
[11] Caraballo, T., Real, J.: Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459(2040), 3181-3194 (2003) · Zbl 1057.35027 · doi:10.1098/rspa.2003.1166
[12] Cazenave, T., Dickstein, F., Weissler, F.B.: An equation whose Fujita critical exponent is not given by scaling. Nonlinear Anal. 68(4), 862-874 (2008) · Zbl 1132.35308 · doi:10.1016/j.na.2006.11.042
[13] Cazenave, T., Dickstein, F., Weissler, F.B.: Sign-changing stationary solutions and blowup for the nonlinear heat equation in a ball. Math. Ann. 344(2), 431-449 (2009) · Zbl 1168.35022 · doi:10.1007/s00208-008-0312-6
[14] Chen, S.P., Triggiani, R.: Proof of two conjectures by G. Chen and D. L. Russell on structural damping for elastic systems. Approximation and optimization (Havana, 1987), Lecture Notes in Math., vol. 1354, pp. 234-256. Springer, Berlin (1988) · Zbl 0717.34066
[15] Chen, S., Triggiani, R.: Characterization of domains of fractional powers of certain operators arising in elastic systems, and applications. J. Differ. Equ. 88, 279-293 (1990) · Zbl 0717.34066 · doi:10.1016/0022-0396(90)90100-4
[16] Cholewa, J.W., Dlokto, T.: Parabolic equations with critical nonlinearities. Topol. Methods Nonlinear Anal. 21, 311-324 (2003) · Zbl 1028.35087 · doi:10.12775/TMNA.2003.019
[17] Conti, M., Marchini, E., Pata, V.: A well posedness result for nonlinear viscoelastic equations with memory. Nonlinear Anal. 94, 206-216 (2014) · Zbl 1282.35249 · doi:10.1016/j.na.2013.08.015
[18] Conti, M., Marchini, E., Pata, V.: Reaction-diffusion with memory in the minimal state framework. Trans. Am. Math. Soc. 366(9), 4969-4986 (2014) · Zbl 1297.35045 · doi:10.1090/S0002-9947-2013-06097-7
[19] Da Prato, G., Ichikawa, A.: Optimal control for integrodifferential equations of paraobolic type. SIAM J. Control Optim. 31, 1167-1182 (1993) · Zbl 0785.93048 · doi:10.1137/0331055
[20] D’Abbico, M.: The influence of a nonlinear memory on the damped wave equation. Nonlinear Anal. 95, 130-145 (2014) · Zbl 1284.35286 · doi:10.1016/j.na.2013.09.006
[21] de Andrade, B., Viana, A.: Integrodifferential equations with applications to a plate equation with memory. Math. Nachr. (2016). doi:10.1002/mana.201500205 · Zbl 1386.74038
[22] Engler, H.: Global regular solutions for the dynamic antiplane shear problem in nonlinear viscoelasticity. Math. Z. 202(2), 251-259 (1989) · Zbl 0697.73033 · doi:10.1007/BF01215257
[23] Fujita, H., Kato, T.: On the Navier-Stokes initial value problem I. Arch. Rat. Mech. Anal. 16, 481-521 (1964) · Zbl 0126.42301 · doi:10.1007/BF00276188
[24] Fabrizio, M., Polidoro, S.: Asymptotic decay for some differential systems with fading memory. Asymp. Anal. 81, 1245-1264 (2002) · Zbl 1035.45006
[25] Fino, A.Z., Kirane, M.: Qualitative properties of solutions to a nonlocal evolution system. Math. Methods Appl. Sci. 34(9), 1125-1143 (2011) · Zbl 1218.35119 · doi:10.1002/mma.1428
[26] Fino, Ahmad Z., Kirane, Mokhtar: Qualitative properties of solutions to a time-space fractional evolution equation. Quart. Appl. Math. 70(1), 133-157 (2012) · Zbl 1253.26008 · doi:10.1090/S0033-569X-2011-01246-9
[27] Fujita, H.: On the blowing up of solutions of the Cauchy problem for \[u_t=\Delta u+u^{1+\alpha }\] ut=Δu+u1+α. J. Fac. Sci. Univ. Tokyo Sect. I 13, 109-124 (1966) · Zbl 0163.34002
[28] Gal, C., Medjo, T.: A Navier-Stokes-Voight model with memory. Math. Methods Appl. Sci. 36(18), 2507-2523 (2013) · Zbl 1278.35176 · doi:10.1002/mma.2771
[29] Giga, Y.: A bound for global solutions of semilinear heat equations. Commun. Math. Phys. 103(3), 415-421 (1986) · Zbl 0595.35057 · doi:10.1007/BF01211756
[30] Giga, Y.: Solutions for semilinear parabolic equations in \[L^p\] Lp and regularity of weak solutions of the Navier-Stokes system. J. Differ. Equ. 62(2), 186-212 (1986) · Zbl 0577.35058 · doi:10.1016/0022-0396(86)90096-3
[31] Grillakis, M.G.: Regularity and asymptotic behavior of the wave equation with critical nonlinearity. Ann. Math. 132, 485-509 (1990) · Zbl 0736.35067 · doi:10.2307/1971427
[32] Guesmia, A.: Asymptotic stability of abstract dissipative systems with infinite memory. J. Math. Anal. Appl. 382, 748-760 (2011) · Zbl 1225.45005 · doi:10.1016/j.jmaa.2011.04.079
[33] Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31, 113-126 (1968) · Zbl 0164.12901 · doi:10.1007/BF00281373
[34] Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lectures Notes in Mathematics. Springer, Berlin (1980)
[35] Kemppainen, J., Siljander, J., Vergara, V., Zacher, R.: Decay estimates for time-fractional and other non-local in time subdiffusion equations in \[R^d\] Rd. Math. Ann. (2016). doi:10.1007/s00208-015-1356-z · Zbl 1354.35178
[36] Loreti, P., Sforza, D.: Control problems for weakly coupled systems with memory. J. Differ. Equ. 257, 1879-1938 (2014) · Zbl 1291.93031 · doi:10.1016/j.jde.2014.05.016
[37] Lunardi, A.: On the linear heat equation with fading memory. SIAM J. Math. Anal. 21(5), 1213-1224 (1990) · Zbl 0716.35031 · doi:10.1137/0521066
[38] Loayza, M.: Asymptotic behavior of solutions to parabolic problems with nonlinear nonlocal terms. Electron. J. Differ. Equ. 228, 1-12 (2013) · Zbl 1304.35098
[39] Loayza, M., Quinteiro, I.: A heat equation with a nonlinear nonlocal term in time and singular initial data. Differ. Integral Equ. 27(5-6), 447-460 (2014) · Zbl 1340.35164
[40] Loayza, M., Quinteiro, I.G.: A nonlocal in time parabolic system whose Fujita critical exponent is not given by scaling. J. Math. Anal. Appl. 374(2), 615-632 (2011) · Zbl 1203.35032 · doi:10.1016/j.jmaa.2010.08.079
[41] Ma, T.F., Narciso, V., Pelicer, M.L.: Long-time behavior of a model of extensible beams with nonlinear boundary dissipations. J. Math. Anal. Appl. 396, 694-703 (2012) · Zbl 1256.35162 · doi:10.1016/j.jmaa.2012.07.004
[42] Mola, G., Yagi, A.: A forest model with memory. Funkc. Ekvac. 52(1), 19-40 (2009) · Zbl 1179.37118 · doi:10.1619/fesi.52.19
[43] Munteanu, I.: Boundary stabilization of the Navier-Stokes equation with fading memory. Int. J. Control 88(3), 531-542 (2015) · Zbl 1328.93207 · doi:10.1080/00207179.2014.964780
[44] Prüss, J.: On linear Volterra equations of parabolic type in Banach spaces. Trans. Am. Math. Soc. 301, 691-721 (1987) · Zbl 0619.45004 · doi:10.2307/2000666
[45] Rivera, J.M., Fatori, L.H.: Smoothing effect and propagations of singularities for viscoelastic plates. J. Math. Anal. App. 206, 397-427 (1997) · Zbl 0870.73020 · doi:10.1006/jmaa.1997.5223
[46] Ru, S., Chen, J.: The blow-up solutions of the heat equations in \[{\cal F}L^1(\mathbb{R}^N)\] FL1(RN). J. Funct. Anal. 269(5), 1264-1288 (2015) · Zbl 1323.35054 · doi:10.1016/j.jfa.2015.05.005
[47] Sun, F., Shi, P.: Global existence and non-existence for a higher-order parabolic equation with time-fractional term. Nonlinear Anal. 75(10), 4145-4155 (2012) · Zbl 1298.35103 · doi:10.1016/j.na.2012.03.005
[48] Tebou, L.: Well-posedness and stability of a hinged plate equation with localized nonlinear structural damping. Nonlinear Anal. 71, 2288-2297 (2009) · Zbl 1239.74048 · doi:10.1016/j.na.2009.05.026
[49] Viana, A.: Local well-posedness for a Lotka-Volterra system in Besov spaces. Comput. Math. Appl. 69(7), 667-674 (2015) · Zbl 1443.35062 · doi:10.1016/j.camwa.2015.02.013
[50] Webb, G.: An abstract semilinear Volterra integrodifferential equation. Proc. Am. Math. Soc. 69, 255-260 (1978) · Zbl 0388.45012 · doi:10.1090/S0002-9939-1978-0467214-4
[51] Weissler, F.B.: Existence and non-existence of global solutions for a semilinear heat equation. Israel J. Math. 38, 29-40 (1981) · Zbl 0476.35043 · doi:10.1007/BF02761845
[52] Yin, H.: Weak and classical solutions of some nonlinear Volterra integrodifferential equations. Commun. Partial Differ. Equ. 17, 11369-11385 (1992) · Zbl 0759.45012 · doi:10.1080/03605309208820889
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.