×

Stabilisation of discrete-time systems via Schur stability region. (English) Zbl 1440.93183

Summary: In this paper, we consider the stabilisation problem of discrete-time systems by affine compensator. Using the known properties of the Schur stability region of monic polynomials, we give conditions under which stabilising controllers exist. A necessary and sufficient condition is obtained when the difference of the order of the system and the number of stabilising parameters is one. In the general case, two solution algorithms: division-elimination and least-square minimisation algorithms are suggested.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C55 Discrete-time control/observation systems
Full Text: DOI

References:

[1] Apkarian, P.; Noll, D., Nonsmooth H_∞ synthesis, IEEE Transactions on Automatic Control, 51, 1, 71-86 (2006) · Zbl 1366.93148
[2] Barmish, B. R., New tools for robustness of linear systems (1994), New York, NY: Macmillan, New York, NY · Zbl 1094.93517
[3] Briat, C., Linear parameter-varying and time-delay systems - analysis, observation, filtering & control: Lecture notes in control and information sciences (2015), Berlin Heidelberg: Springer-Verlag, Berlin Heidelberg · Zbl 1395.93003
[4] Chesi, G.; Garulli, A.; Tesi, A.; Vicino, A., Homogeneous polynomial forms for robustness analysis of uncertain systems: Advances on delays and dynamics, 3 (2009), Berlin Heidelberg: Springer-Verlag, Berlin Heidelberg · Zbl 1218.93002
[5] Chesi, G., Robust static output feedback controllers via robust stabilizability functions, IEEE Transactions on Automatic Control, 59, 6, 1618-1623 (2014) · Zbl 1360.93617
[6] Diaz-Barrero, J. L.; Egozcue, J. J., Characterization of polynomials using reflection coefficients, Applied Mathematics E-Notes, 4, 114-121 (2004) · Zbl 1074.30006
[7] Fam, A. T.; Meditch, J. S., A canonical parameter space for linear systems design, IEEE Transactions on Automatic Control, 23, 3, 454-458 (1978) · Zbl 0377.93021
[8] Fujisaki, Y.; Oishi, Y.; Tempo, R., Mixed deterministic/randomized methods for fixed order controller design, IEEE Transactions on Automatic Control, 53, 9, 2033-2047 (2008) · Zbl 1367.93228
[9] Fukuda, K., Frequently asked questions in polyhedral computation (2004)
[10] Gass, S. I., Linear programming: Methods and applications (1975), New York, NY: McGraw-Hill, New York, NY · Zbl 0354.90048
[11] Henrion, D.; Šebek, M.; Kučera, V., Positive polynomials and robust stabilization with fixed-order controllers, IEEE Transactions on Automatic Control, 48, 7, 1178-1186 (2003) · Zbl 1364.93707
[12] Keel, L. H.; Rego, J. I.; Bhattacharyya, S. P., A new approach to digital PID controller design, IEEE Transactions on Automatic Control, 48, 4, 687-692 (2003) · Zbl 1364.93281
[13] Kreyszig, E., Introductory functional analysis with applications (1989), New York, NY: Wiley, New York, NY · Zbl 0706.46001
[14] Lasserre, J. B., Global optimization with polynomials and the problem of moments, SIAM Journal of Optimization, 11, 3, 796-817 (2001) · Zbl 1010.90061
[15] Lasserre, J. B., Moments, positive polynomials and their applications (2009), London: Imperial College Press, London
[16] Levinson, N., The Wiener RMS error criterion in filter design and prediction, Journal of Mathematical Physics, 25, 1, 261-278 (1946)
[17] Malik, W. A.; Darbha, S.; Bhattacharyya, S. P., A linear programming approach to the synthesis of fixed-structure controllers, IEEE Transactions on Automatic Control, 53, 6, 1341-1352 (2008) · Zbl 1367.93216
[18] Nurges, Ü., New stability conditions via reflection coefficients of polynomials, IEEE Transactions on Automatic Control, 50, 9, 1354-1360 (2005) · Zbl 1365.93352
[19] Nurges, Ü., Reflection coefficients of polynomials and stable polytopes, IEEE Transactions on Automatic Control, 54, 6, 1314-1318 (2009) · Zbl 1367.93441
[20] Nurges, Ü.; Avanessov, S., Fixed-order stabilising controller design by a mixed randomized/deterministic method, International Journal of Control, 88, 2, 335-346 (2015) · Zbl 1328.93228
[21] Papoulis, A., Probability, random variables and stochastic processes (1991), Singapore: McGraw Hill, Singapore · Zbl 0191.46704
[22] Parrilo, P., Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization (2000), Pasadena, CA: California Institute of Technology, Pasadena, CA
[23] Petrikevich, Y. I., Randomized methods of stabilization of the discrete linear systems, Automation and Remote Control, 69, 11, 1911-1921 (2008) · Zbl 1163.93399
[24] Polyak, B. T.; Shcherbakov, P. S., Hard problems in linear control theory: Possible approaches to solution, Automation and Remote Control, 66, 5, 681-718 (2005) · Zbl 1095.93011
[25] Shcherbakov, P. S.; Dabbane, F., On the generation of random stable polynomials, European Journal of Control, 17, 2, 145-161 (2011) · Zbl 1227.65008
[26] Syrmos, V. L.; Abdallah, C. T.; Dorato, P.; Grigoriadis, K., Static output feedback - A survey, Automatica, 33, 2, 125-137 (1994) · Zbl 0872.93036
[27] Szegö, G., Orthogonal polynomials (1975), Providence, RI: American Mathematical Society, Providence, RI · JFM 61.0386.03
[28] Yılmaz, Ş.; Büyükköroğlu, T.; Dzhafarov, V., Random search of stable member in a matrix polytope, Journal of Computational and Applied Mathematics, 308, 59-68 (2016) · Zbl 1348.65095
[29] Tesi, A.; Vicino, A.; Zappa, G., Convexity properties of polynomials with assigned root location, IEEE Transactions on Automatic Control, 39, 3, 668-672 (1994) · Zbl 0814.93053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.