×

\(\mathrm{K}_1\) of a \(p\)-adic group ring. II: The determinantal kernel \(\mathrm{SK}_1\). (English) Zbl 1308.19002

Summary: We describe the group \(\mathrm{SK}_1(R [G])\) for group rings \(R[G]\) where \(G\) is an arbitrary finite group and where the coefficient ring \(R\) is a \(p\)-adically complete Noetherian integral domain of characteristic zero which admits a lift of Frobenius and which also satisfies a number of further mild conditions. Our results extend previous work of R. Oliver [Invent. Math. 57, 183–204 (1980; Zbl 0428.18011); Math. Scand. 47, 195–231 (1980; Zbl 0456.16027); Lect. Notes Math. 854, 299–337 (1981; Zbl 0454.16010); Proc. Lond. Math. Soc. (3) 46, 1–37 (1983; Zbl 0499.16017)] who obtained such results for the valuation rings of finite extensions of the \(p\)-adic field.
For part I, cf. [the authors, J. Algebra 326, No. 1, 74–112 (2011; Zbl 1219.19005)].

MSC:

19B28 \(K_1\) of group rings and orders
19C99 Steinberg groups and \(K_2\)
16E20 Grothendieck groups, \(K\)-theory, etc.

References:

[1] Bouc, S., Green Functors and G-Sets, Lecture Notes in Mathematics, vol. 1671 (1991), Springer-Verlag · Zbl 0735.19001
[2] Brown, K. S., Cohomology of Groups, Graduate Texts in Mathematics, vol. 87 (1982), Springer-Verlag · Zbl 0584.20036
[3] Chinburg, T.; Pappas, G.; Taylor, M. J., \( \operatorname{K}_1\) of a p-adic group ring I: the determinantal image, J. Algebra, 326, 74-112 (2011) · Zbl 1219.19005
[4] Chinburg, T.; Pappas, G.; Taylor, M. J., Higher adeles and non-abelian Riemann-Roch, Preprint · Zbl 1349.14035
[5] Curtis, C.; Reiner, I., Methods in Representation Theory (with Applications to Finite Groups and Orders), vol. 2 (1994), Wiley Classics
[6] Dress, A., Induction and structure theorems for orthogonal representations of finite groups, Ann. Math. (2), 102, 2, 291-325 (1975) · Zbl 0315.20007
[7] Fröhlich, A., Galois Module Structure of Algebraic Integers, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 1 (1983), Springer-Verlag: Springer-Verlag Berlin, x+262 pp · Zbl 0501.12012
[8] Fukaya, T.; Kato, K., A formulation of conjectures on p-adic zeta functions in non-commutative Iwasawa theory, (Proceedings of the St. Petersburg Mathematical Society, vol. XII. Proceedings of the St. Petersburg Mathematical Society, vol. XII, Amer. Math. Soc. Transl. Ser. 2, vol. 219 (2006), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-85 · Zbl 1238.11105
[9] Izychev, D.; Venjakob, O., Galois invariants of \(\operatorname{K}_1\)-groups of Iwasawa algebras, (New Trends in Noncommutative Algebra. New Trends in Noncommutative Algebra, Contemp. Math., vol. 562 (2012), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 243-263 · Zbl 1254.19003
[10] Kakde, M., \( \operatorname{K}_1\) of some Iwasawa algebras, Preprint
[11] Kakde, M., \( \operatorname{K}_1\) of some non-commutative group rings, Preprint
[12] Kakde, M., The main conjecture of Iwasawa theory for totally real fields, Invent. Math., 193, 3, 539-626 (2013) · Zbl 1300.11112
[13] Kato, K., \( \operatorname{K}_1\) of some non-commutative completed group rings, K-Theory, 34, 2, 99-140 (2005) · Zbl 1080.19002
[14] Lam, T. Y., Induction theorems for Grothendieck groups and Whitehead groups of finite groups, Ann. Sci. Éc. Norm. Supér. (4), 1, 91-148 (1968) · Zbl 0164.02703
[15] Milnor, J., Introduction to algebraic K-theory, Annals of Math. Studies, vol. 72 (1971), Princeton University Press: Princeton University Press Princeton · Zbl 0237.18005
[16] Oliver, R., \( \operatorname{SK}_1\) for finite group rings. II, Math. Scand., 47, 2, 195-231 (1980) · Zbl 0456.16027
[17] Oliver, R., \( \operatorname{SK}_1\) for finite groups rings. I, Invent. Math.. Invent. Math., Invent. Math., 64, 1, 167-169 (1981), correction · Zbl 0455.18007
[18] Oliver, R., \( \operatorname{SK}_1\) for finite group rings. III. Algebraic K-theory, (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980. Proc. Conf., Northwestern Univ., Evanston, Ill., 1980, Evanston 1980. Proc. Conf., Northwestern Univ., Evanston, Ill., 1980. Proc. Conf., Northwestern Univ., Evanston, Ill., 1980, Evanston 1980, Lecture Notes in Math., vol. 854 (1981), Springer: Springer Berlin), 299-337 · Zbl 0454.16010
[19] Oliver, R., \( \operatorname{SK}_1\) for finite group rings. IV, Proc. Lond. Math. Soc. (3), 46, 1, 1-37 (1983) · Zbl 0499.16017
[20] Oliver, R., Whitehead Groups of Finite Groups, London Mathematical Society Lecture Note Series, vol. 132 (1988), Cambridge University Press: Cambridge University Press Cambridge, viii+349 pp · Zbl 0636.18001
[21] Ritter, J.; Weiss, A., The integral logarithm in Iwasawa theory: an exercise, J. Théor. Nr. Bordx., 22, 1, 197-207 (2010) · Zbl 1214.11124
[22] Ritter, J.; Weiss, A., On the “main conjecture” of equivariant Iwasawa theory, J. Am. Math. Soc., 24, 4, 1015-1050 (2011) · Zbl 1228.11165
[23] Rosenberg, J., Algebraic K-Theory and Its Applications, Graduate Texts in Mathematics, vol. 147 (1994), Springer-Verlag: Springer-Verlag New York, x+392 pp · Zbl 0801.19001
[24] Serre, J.-P., Représentations linéaires des groupes finis (1978), Hermann: Hermann Paris, 182 pp · Zbl 0407.20003
[25] Taylor, M. J., Classgroups of Group Rings, London Mathematical Society Lecture Note Series, vol. 91 (1984), Cambridge University Press: Cambridge University Press Cambridge, xiii+119 pp · Zbl 0597.13002
[26] Wall, C. T.C., On the classification of Hermitian forms. III. Complete semilocal rings, Invent. Math., 19, 59-71 (1973) · Zbl 0259.16013
[27] Wall, C. T.C., Norms of units in group rings, Proc. Lond. Math. Soc. (3), 29, 593-632 (1974) · Zbl 0302.16013
[28] Witte, M., Non-commutative L-functions for varieties over finite fields, Preprint
[29] Witte, M., Unit L-functions for étale sheaves of modules over noncommutative rings, Preprint · Zbl 1359.14023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.