×

On the existence of stabilising feedback controls for real analytic small-time locally controllable systems. (English) Zbl 1327.93315

Summary: It is shown that, for real analytic control systems of the form \(f:M\times\Omega\ni (q,u)\mapsto f(q,u)\in T_qM\), where \(M\) is a real analytic manifold and \(\Omega\) is a separable metric space, small-time local controllability from an equilibrium \(p\in M\) implies the existence of a piecewise analytic feedback control that locally stabilises \(f\) at \(p\). The proof is similar in spirit to an earlier analogous result for globally controllable systems; however, it resolves several technical obstructions that emerge when the assumption of small-time local controllability is substituted for that of global controllability. In the light of a recent characterisation of small-time local controllability for homogeneous control systems, the main result of the paper implies that, for a large class of control systems that appear in applications and the literature, there is a computable sufficient condition for stabilisability by means of a piecewise analytic feedback control.

MSC:

93D15 Stabilization of systems by feedback
93B05 Controllability
93C15 Control/observation systems governed by ordinary differential equations
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Aguilar C, Lewis A (2012) Small-time local controllability for a class of homogeneous systems. SIAM J Control Optim 50(3):1502-1517 · Zbl 1246.93017 · doi:10.1137/100785892
[2] Aguilar CO (2010) Local controllability of affine distributions. Ph.D. thesis, Queen’s University
[3] Aguilar CO (2012) Local controllability of control-affine systems with quadractic drift and constant control-input vector fields. In: 51st IEEE Conference on Decision and Control (CDC) · Zbl 0806.93049
[4] Ancona F, Bressan A (1999) Patchy vector fields and asymptotic stabilization. ESAIM: Control, Optim, Calc Var 4:445-471 · Zbl 0924.34058 · doi:10.1051/cocv:1999117
[5] Ancona F, Bressan A (2004) Flow stability of patchy vector fields and robust feedback stabilization. SIAM J Control Optim 41(5):1455-1476 · Zbl 1055.34094 · doi:10.1137/S0363012901391676
[6] Ancona F, Bressan A (2004) Stabilization by patchy feedbacks and robustness properties. In: de Queiroz MS, Malisoff M, Wolenski P (eds) Optimal Control, Stabilization and Nonsmooth Analysis, Lecture Notes in Control and Information Sciences, vol 301. Springer, pp 185-199 · Zbl 1259.93091
[7] Bacciotti A (1992) Local Stabilizability of Nonlinear Control Systems, Advances in Mathematics for Applied Sciences, vol 8. World Scientific Publishing Co. Pvt. Ltd., Singapore · Zbl 0757.93061
[8] Bacciotti A, Rosier L (2005) Liapunov Functions and Stability in Control Theory. Communications and Control Engineering. Springer, Berlin, New York · Zbl 1078.93002
[9] Bardi M, Capuzzo-Dolcetta I (2008) Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Systems & Control. Birkhäuser, Boston, MA · Zbl 1134.49022
[10] Bianchini RM, Stefani G (1993) Controllability along a trajectory: a variational approach. SIAM J Control Optim 31(4):900-927 · Zbl 0797.49015 · doi:10.1137/0331039
[11] Bressan A, Picolli B (2007) Introduction to the mathematical theory of control, AIMS on Applied Mathematics, vol 2. American Institute of the Mathematical Sciences · Zbl 1324.34032
[12] Brockett RW (1983) Asymptotic stability and feedback stabilization. In: Brockett RW, Millman RS, Sussmann HJ (eds) Geometric Control Theory, Progress in Mathematics, vol 27. Birkhäuser, Boston, pp 181-191 · Zbl 0528.93051
[13] Brunovský P (1978) Every normal linear system has a regular time-optimal synthesis. Math Slovaca 28(1):81-100 · Zbl 0369.49013
[14] Bullo F, Cortés J, Lewis AD, Martínez S (2004) Vector-valued quadratic forms in control theory. In: Blondel VD, Megretski A (eds) Unsolved Problems in Mathematical Systems and Control Theory. Princeton University Press, Princeton, pp 315-320 · Zbl 0212.47302
[15] Bullo F, Lewis AD (2004) Geometric control of mechanical systems, vol 49., Texts in applied mathematicsSpringer, New York-Heidelberg-Berlin
[16] Celikovsky S, Nijmeijer H (1997) On the relation between local controllability and stabilizability for a class of nonlinear systems. IEEE Trans Autom Control 42(1):90-94 · Zbl 0871.93042 · doi:10.1109/9.553690
[17] Clarke FH, Ledyaev YS, Sontag ED, Subbotin AI (1997) Asymptotic controllability implies feedback stabilization. IEEE Trans Autom Control 42(10):1394-1407 · Zbl 0892.93053 · doi:10.1109/9.633828
[18] Colonius F, Kliemann W (2000) The Dynamics of Control. Systems & Control. Birkhäuser, Boston · Zbl 1020.93500
[19] Coron J, Rosier L (1994) A relation between continuous time-varying and discontinuous feedback stabilization. J Math Syst, Estim, Control 4:67-84 · Zbl 0925.93827
[20] Coron JM (1990) A necessary condition for feedback stabilization. Syst Control Lett 14(3):227-232 · Zbl 0699.93075 · doi:10.1016/0167-6911(90)90017-O
[21] Coron JM (1999) On the stabilization of some nonlinear control systems: Results, tools, and applications. In: Clarke FH, Stern RJ (eds) Nonlinear Analysis, Differential Equations, and Control Mathematical and Physical Sciences, vol 528. Kluwer, Dordrecht, Boston, pp 307-367 · Zbl 0984.93067
[22] Dullerud G, Paganini F (2010) A course in robust control theory: a convex approach. Texts in Applied Mathematics. Springer, New York · Zbl 0939.93001
[23] Evans LC, James MR (1989) The Hamilton-Jacobi-Bellman equation for time-optimal control. SIAM J Control Optim 27(6):1477-1489 · Zbl 0688.49029 · doi:10.1137/0327076
[24] Filippov AF (1964) Differential equations with discontinuous right-hand side. In: Fifteen papers on differential equations, 2, vol 42. American Mathematical Society, pp 199-231 · Zbl 0148.33002
[25] Francis B, Wonham W (1976) The internal model principle of control theory. Automatica 12(5):457-465. doi:10.1016/0005-1098(76)90006-6. http://www.sciencedirect.com/science/article/pii/0005109876900066 · Zbl 0344.93028
[26] Freeman R, Kokotović P (2008) Robust nonlinear control design: state-space and Lyapunov techniques. Modern Birkhäuser Classics. Birkhäuser. http://books.google.ca/books?id=_eTb4Yl0SOEC · Zbl 1130.93005
[27] Grasse KA (1992) On the relation between small-time local controllability and normal self-reachability. Math Control Signals Syst 5:41-66 · Zbl 0745.93006 · doi:10.1007/BF01211975
[28] Grasse KA, Sussmann HJ (1990) Global controllability by nice controls. In: Sussmann HJ (ed) Nonlinear Controllability and Optimal Control, Pure and Applied Mathematics, vol 133, chap 3. Marcel Dekker, New York, pp 33-79 · Zbl 0703.93014
[29] Grüne L (1998) Asymptotic controllability and exponential stabilization of nonlinear control systems at singular points. SIAM J Control Optim 36(5):1485-1503 · Zbl 0910.93063 · doi:10.1137/S0363012997315919
[30] Hautus MLJ (1970) Stabilization, controllability, and observability of linear autonomous systems. Indag Math 73:448-455 · Zbl 0212.47302 · doi:10.1016/S1385-7258(70)80049-X
[31] Hirschorn RM, Lewis AD (2002) Geometric local controllability: Second-order conditions. In: Proceedings of the 40th IEEE Conference on Decision and Control, pp 368-369
[32] Hirschorn RM, Lewis AD (2006) An example with interesting controllability and stabilization properties. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp 3748-3753 · Zbl 0666.93103
[33] Jurdjevic V, Quinn JP (1978) Controllability and stability. J Differ Equ 28(3):381-389 · Zbl 0417.93012 · doi:10.1016/0022-0396(78)90135-3
[34] Kawski M (1989) Stabilization of nonlinear systems in the plane. SystControl Lett 12:169-175 · Zbl 0666.93103
[35] Krasnosel’skiĭ MA, Zabreĭko PP (1984) Geometrical methods of nonlinear analysis. Springer, Berlin, New York · Zbl 0546.47030
[36] Krastanov MI, Ribarska NK (2013) Viability and an Olech type result. Serdica Math J 39(3-4):423-446 · Zbl 1324.34032
[37] Krstić M, Kanellakopoulos I, Kokotović P (1995) Nonlinear and adaptive control design. Adaptive and learning systems for signal processing, communications, and control. Wiley, New York · Zbl 0807.93036
[38] Ledyaev Y, Sontag E (1999) A Lyapunov characterization of robust stabilization. Nonlinear Analy-Ser A Theory Methods Ser B Real World Appl 37(7):813-840 · Zbl 0947.34054 · doi:10.1016/S0362-546X(98)00075-3
[39] Lee EB, Markus L (1967) Foundations of Optimal Control Theory. The SIAM Series in Applied Mathematics. Wiley, New York · Zbl 0159.13201
[40] Malisoff M, Rifford L, Sontag E (2004) Global asymptotic controllability implies input-to-state stabilization. SIAM J Control Optim 42(6):2221-2238 · Zbl 1069.93031 · doi:10.1137/S0363012903422333
[41] Nijmeijer H, van der Schaft AJ (1990) Nonlinear dynamical control systems. Springer, New York · Zbl 0701.93001
[42] Prieur C (2005) Asymptotic controllability and robust asymptotic stabilizability. SIAM J Control Optim 43(5):1888-1912 · Zbl 1116.93023 · doi:10.1137/S0363012901385514
[43] Ryan EP (1994) On Brockett’s condition for smooth stabilizability and its necessity in a context of nonsmooth feedback. SIAM J Control Optim 32(6):1597-1604 · Zbl 0806.93049 · doi:10.1137/S0363012992235432
[44] Sontag ED (1998) Mathematical control theory: deterministic finite dimensional systems. Texts in Applied Mathematics, vol 6. Springer, New York · Zbl 0945.93001
[45] Sussmann HJ (1976) Some properties of vector field systems that are not altered by small perturbations. J Differ Equ 20(2):292-315. doi:10.1016/0022-0396(76)90109-1. http://www.sciencedirect.com/science/article/pii/0022039676901091 · Zbl 0346.49036
[46] Sussmann HJ (1978) A sufficient condition for local controllability. SIAM J Control Optim 16(5):790-802 · Zbl 0391.93004 · doi:10.1137/0316054
[47] Sussmann HJ (1979) Subanalytic sets and feedback control. J Differ Equ 31(1):31-52 · Zbl 0407.93010 · doi:10.1016/0022-0396(79)90151-7
[48] Sussmann HJ (1987) A general theorem on local controllability. SIAM J Control Optim 25(1):158-194 · Zbl 0629.93012 · doi:10.1137/0325011
[49] Sussmann HJ, Jurdjevic V (1972) Controllability of nonlinear systems. J Differ Equ 12:95-116 · Zbl 0242.49040 · doi:10.1016/0022-0396(72)90007-1
[50] Tyner D, Lewis A (2004) Controllability of a hovercraft model (and two general results). In: 43rd IEEE Conference on Decision and Control (CDC), vol 2. pp 1204-1209
[51] Zabczyk J (1989) Some comments on stabilizability. Appl Math Optim 19(1):1-9 · Zbl 0654.93054 · doi:10.1007/BF01448189
[52] Zubov VI (1964) Methods of A. M. Lyapunov and their Application. Groningen, P. Noordhoff · Zbl 0115.30204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.