×

Quasiconformal mappings and Neumann eigenvalues of divergent elliptic operators. (English) Zbl 1495.35131

Summary: We study spectral properties of divergence form elliptic operators \(-\operatorname{div}[A(z) \nabla f(z)]\) with the Neumann boundary condition in planar domains (including some fractal type domains) that satisfy to the quasihyperbolic boundary conditions. Our method is based on an interplay between quasiconformal mappings, elliptic operators and composition operators on Sobolev spaces.

MSC:

35P05 General topics in linear spectral theory for PDEs
35J25 Boundary value problems for second-order elliptic equations
30C62 Quasiconformal mappings in the complex plane

References:

[1] Koskela, P.; Onninen, J.; Tyson, JT., Quasihyperbolic boundary conditions and capacity: Hölder continuity of quasiconformal mappings, Comment Math Helv, 76, 416-435 (2001) · Zbl 1096.30503
[2] Koskela, P.; Onninen, J.; Tyson, JT., Quasihyperbolic boundary conditions and capacity: Poincaré domains, Math Ann, 323, 811-830 (2002) · Zbl 1007.30029
[3] Astala, K.; Iwaniec, T.; Martin, G., Elliptic partial differential equations and quasiconformal mappings in the plane (2008), Princeton and Oxford: Princeton University Press
[4] Courant, R., Dirichlet’s principle, conformal mapping, and minimal surfaces (1977), Berlinb: Springer-Verlag, Berlinb · Zbl 0354.30012
[5] Vodop’yanov, SK; Gol’dstein, VM., Lattice isomorphisms of the spaces \(####\) and quasiconformal mappings, Siberian Math J, 16, 224-246 (1975) · Zbl 0309.46029
[6] Ashbaugh, MS. Isoperimetric and universal inequalities for eigenvalues. Spectral theory and geometry. Edinburgh: 1998. Cambridge: Cambridge University Press; 1999, p. 95-139. (London Math. Soc. Lecture Note Series, Vol. 273). · Zbl 0937.35114
[7] Ashbaugh, MS, Benguria, RD. Isoperimetric inequalities for eigenvalues of the Laplacian. Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday. Proceedings of the Symposium on Pure Mathematics, Vol. 76, Providence (RI): American Mathematical Society; 2007. p. 105-139. · Zbl 1221.35261
[8] Benguria, RD; Linde, H.; Loewe, B., Isoperimetric inequalities for eigenvalues of the Laplacian and the Schrödinger operator, Bull Math Sci, 2, 1-56 (2012) · Zbl 1260.35001
[9] Brandolini, B.; Chiacchio, F.; Trombetti, C., Optimal lower bounds for eigenvalues of linear and nonlinear Neumann problems, Proc Royal Soc Edinburgh, 145A, 31-45 (2015) · Zbl 1321.35117
[10] Enache, C.; Philippin, GA., On some isoperimetric inequalities involving eigenvalues of symmetric free membranes, Z Angew Math Mech, 95, 424-430 (2015) · Zbl 1322.35101
[11] Esposito, L.; Nitsch, C.; Trombetti, C., Best constants in Poincaré inequalities for convex domains, J Convex Anal, 20, 253-264 (2013) · Zbl 1263.35010
[12] Ferone, V.; Nitsch, C.; Trombetti, C., A remark on optimal weighted Poincaré inequalities for convex domains, Atti Accad Naz Lincei Rend Lincei Mat Appl, 23, 467-475 (2012) · Zbl 1258.26013
[13] Laugesen, RS; Morpurgo, C., Extremals of eigenvalues of Laplacians under conformal mapping, J Funct Anal, 155, 64-108 (1998) · Zbl 0917.47018
[14] Szegö, G., Inequalities for certain eigenvalues of a membrane of given area, J Rational Mech Anal, 3, 343-356 (1954) · Zbl 0055.08802
[15] Payne, LE; Weinberger, HF., An optimal Poincaré inequality for convex domains, Arch Rat Mech Anal, 5, 286-292 (1960) · Zbl 0099.08402
[16] Brandolini, B.; Chiacchio, F.; Dryden, EB, Sharp Poincaré inequalities in a class of non-covex sets, J Spectr Theory, 8, 1583-1615 (2018) · Zbl 1407.35075
[17] Gol’dshtein, V.; Pchelintsev, V.; Ukhlov, A., Integral estimates of conformal derivatives and spectral properties of the Neumann-Laplacian, J Math Anal Appl, 463, 19-39 (2018) · Zbl 1397.30007
[18] Gol’dshtein, V, Pchelintsev, V, Ukhlov, A. Spectral properties of the Neumann-Laplace operator in quasiconformal regular domains. Differential Equations, Mathematical Physics, and Applications. Selim Grigorievich Krein Centennial, Contemporary Mathematics, AMS; 2019. · Zbl 1423.35276
[19] Gol’dshtein, V.; Ukhlov, A., On the first eigenvalues of free vibrating membranes in conformal regular domains, Arch Rational Mech Anal, 221, 893-915 (2016) · Zbl 1338.35422
[20] Ukhlov, A., On mappings, which induce embeddings of Sobolev spaces, Siberian Math J, 34, 185-192 (1993) · Zbl 0835.46035
[21] Vodop’yanov, SK; Ukhlov, AD., Superposition operators in Sobolev spaces (in Russian), Izvestiya VUZ, 46, 11-33 (2002) · Zbl 1033.47020
[22] Gutlyanski, V.; Nesmelova, O.; Ryazanov, V., On quasiconformal maps and semi-linear equations in the plane, J Math Sci, 229, 7-29 (2018) · Zbl 1392.35145
[23] Ahlfors, L., Lectures on quasiconformal mappings (1966), Toronto: D. Van Nostrand Co., Inc., Toronto · Zbl 0138.06002
[24] Bojarski, B.; Gutlyanski, V.; Martio, O., Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane (2013), Zurich: EMS, Zurich · Zbl 1276.30002
[25] Gol’dshtein, V.; Gurov, L., Applications of change of variables operators for exact embedding theorems, Integr Equ Oper Theor, 19, 1-24 (1994) · Zbl 0806.46033
[26] Gol’dshtein, V.; Ukhlov, A., Weighted Sobolev spaces and embedding theorems, Trans Am Math Soc, 361, 3829-3850 (2009) · Zbl 1180.46022
[27] Vodop’yanov, SK; Gol’dstein, VM; Reshetnyak, YuG., On geometric properties of functions with generalized first derivatives, Uspekhi Mat Nauk, 34, 17-65 (1979) · Zbl 0407.30012
[28] Gilbarg, D.; Trudinger, NS., Elliptic partial differential equations of second order (1977), Berlin: Springer-Verlag, Berlin · Zbl 0361.35003
[29] Maz’ya, V., Sobolev spaces: with applications to elliptic partial differential equations (2010), Berlin: Springer, Berlin
[30] Astala, K.; Koskela, P., Quasiconformal mappings and global integrability of the derivative, J Anal Math, 57, 203-220 (1991) · Zbl 0772.30022
[31] Gol’dshtein, V.; Ukhlov, A., Sobolev homeomorphisms and Brennan’s conjecture, Comput Meth Funct Theory, 14, 247-256 (2014) · Zbl 1307.30010
[32] Gol’dshtein, V.; Pchelintsev, V.; Ukhlov, A., On the first eigenvalue of the degenerate p-Laplace operator in non-convex domains, Integr Equ Oper Theor, 90, 43 (2018) · Zbl 1401.35222 · doi:10.1007/s00020-018-2469-z
[33] Vodop’yanov, SK; Ukhlov, AD., Set functions and their applications in the theory of Lebesgue and Sobolev spaces, Siberian Adv Math, 14, 78-125 (2004) · Zbl 1089.47027
[34] Henrot, A., Extremum problems for eigenvalues of elliptic operators (2006), Basel, Boston, Berlin: Birkhäuser · Zbl 1109.35081
[35] Gehring, FW; Hag, K., Reflections on reflections in quasidicks, Report Univ Jyväskylä, 83, 81-90 (2001) · Zbl 1007.30028
[36] Astala, K., Area distortion of quasiconformal mappings, Acta Math, 173, 37-60 (1994) · Zbl 0815.30015
[37] Gol’dshtein, V., The degree of summability of generalized derivatives of quasiconformal homeomorphisms, Siberian Math J, 22, 821-836 (1981) · Zbl 0499.30017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.