×

Editing to prime graphs. (English) Zbl 1471.05051

Summary: Given a graph \(G\), a subset \(M\) of \(V(G)\) is a module of \(G\) if for each \(v\in V(G)\setminus M\) and \(x,y\in M, vx \in E(G)\) if and only if \(vy \in E(G)\). The trivial modules of \(G\) are \(\emptyset\), \(\{u\}\) \((u\in V(G))\) and \(V(G)\). Let \(G\) be a graph with at least four vertices. The graph \(G\) is prime if all its modules are trivial. We are interested in the minimum number \(\delta (G)\) of edge modifications (edge deletions and/or additions) that are needed to transform \(G\) into a prime graph. We prove that \(\delta (G) \le v(G)-1\), where \(v(G)=|V(G)|\), and that the upper bound is uniquely reached by the complete graphs and their complements. We then characterize the graphs \(G\) such that \(\delta (G)=v(G)-2\) or \(v(G)-3\), respectively. Lastly, we look for the \(\delta\)-critical graphs, i.e. the graphs \(G\) for which \(\delta (H)>\delta (G)\) for every graph \(H\) obtained from \(G\) by deleting one vertex. We prove that the \(\delta\)-critical graphs are precisely the half graphs and their complements.

MSC:

05C35 Extremal problems in graph theory
05C75 Structural characterization of families of graphs
05C76 Graph operations (line graphs, products, etc.)
Full Text: DOI

References:

[1] Axenovich, M.; Kézdy, A.; Martin, R., On the editing distance of graphs, J. Graph Theory, 58, 123-138 (2008) · Zbl 1156.05027 · doi:10.1002/jgt.20296
[2] Belkhechine, H., Decomposability index of tournaments, Discret. Math., 340, 2986-2994 (2017) · Zbl 1370.05076 · doi:10.1016/j.disc.2017.07.016
[3] Belkhechine, H.; Ben Salha, C., Decomposability and co-modular indices of tournaments, Discret. Math, 344, 112272 (2021) · Zbl 1460.05072 · doi:10.1016/j.disc.2020.112272
[4] Bonizzoni, P., Primitive 2-structures with the \((n-2)\)-property, Theoret. Comput. Sci., 132, 151-178 (1994) · Zbl 0822.68078 · doi:10.1016/0304-3975(94)90231-3
[5] Boudabbous, Y.; Ille, P., Indecomposability graph and critical vertices of an indecomposable graph, Discret. Math., 309, 2839-2846 (2009) · Zbl 1182.05062 · doi:10.1016/j.disc.2008.07.015
[6] Boussaïri, A.; Ille, P., Determination of the prime bound of a graph, Contrib. Discret. Math., 9, 46-62 (2014) · Zbl 1317.05135
[7] Brignall, R.: Simplicity in relational structures and its application to permutation classes, Ph.D. thesis, University of St. Andrews, (2007)
[8] Brignall, R.; Ruškuc, N.; Vatter, V., Simple extensions of combinatorial structures, Mathematika., 57, 193-214 (2011) · Zbl 1225.05107 · doi:10.1112/S0025579310001518
[9] Cournier, A.; Habib, M.; Mayer, E., An efficient algorithm to recognize prime undirected graphs. Lecture Notes in Computer Science, Graph-Theoretic Concepts in Computer Science, 212-224 (1992), Berlin: Springer, Berlin · Zbl 0925.05051
[10] Ehrenfeucht, A.; Rozenberg, G., Primitivity is hereditary for 2-structures, Theoret. Comput. Sci., 70, 343-358 (1990) · Zbl 0701.05053 · doi:10.1016/0304-3975(90)90131-Z
[11] Erdős, P.; Hajnal, A., Chromatic number of finite and infinite graphs and hypergraphs, Discret. Math., 53, 281-285 (1985) · Zbl 0566.05029 · doi:10.1016/0012-365X(85)90148-7
[12] Gallai, T., Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar., 18, 25-66 (1967) · Zbl 0153.26002 · doi:10.1007/BF02020961
[13] Garey, MR; Johnson, DS, Computers and Intractability: A Guide to the Theory of NP-Completeness (1979), New York: Freeman W.H., New York · Zbl 0411.68039
[14] Kitaev, S.; Lozin, V., Words and Graphs (2015), Berlin: Springer, Berlin · Zbl 1409.05003 · doi:10.1007/978-3-319-25859-1
[15] Maffray, F., Preissmann, M.: A translation of Tibor Gallai’s paper: Transitiv orientierbare Graphen. In: Ramirez-Alfonsin, J.L., Reed, B.A. (eds.) Perfect Graphs, pp. 25-66. Wiley, New York (2001) · Zbl 0989.05050
[16] Schmerl, JH; Trotter, WT, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discret. Math., 113, 191-205 (1993) · Zbl 0776.06002 · doi:10.1016/0012-365X(93)90516-V
[17] Spinrad, J., \(P_4\)-trees and substitution decomposition, Discret. Appl. Math., 39, 263-291 (1992) · Zbl 0758.68036 · doi:10.1016/0166-218X(92)90180-I
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.