×

Interactions between kernels, frames, and persistent homology. (English) Zbl 1404.42056

Pesenson, Isaac (ed.) et al., Recent applications of harmonic analysis to function spaces, differential equations, and data science. Novel methods in harmonic analysis. Volume 2. Cham: Birkhäuser/Springer (ISBN 978-3-319-55555-3/hbk; 978-3-319-55556-0/ebook; 978-3-319-55860-8/set). Applied and Numerical Harmonic Analysis, 861-888 (2017).
Summary: This contribution discusses interactions between kernel methods, frame analysis, and persistent homology. To this end, we explain recent connections between these research areas, where special emphasis is placed on the discussion of reproducing kernel Hilbert spaces and persistent mechanisms. We show how interactions between these novel methodologies give new opportunities for the construction of numerical algorithms to analyze properties of data that are so far unexplored.
For the entire collection see [Zbl 1378.42001].

MSC:

42C15 General harmonic expansions, frames
55N35 Other homology theories in algebraic topology
41A30 Approximation by other special function classes
94A20 Sampling theory in information and communication theory
13P25 Applications of commutative algebra (e.g., to statistics, control theory, optimization, etc.)
Full Text: DOI

References:

[1] H. Adams, S. Chepushtanova, T. Emerson, E. Hanson, M. Kirby, F. Motta, R. Neville, C. Peterson, P. Shipman, L. Ziegelmeier, Persistent images: a stable vector representation of persistent homology. arXiv preprint arXiv:1507.06217 (2015) · Zbl 1431.68105
[2] P. Bendich, S. Chin, J. Clarke, J. DeSena, J. Harer, E. Munch, A. Newman, D. Porter, D. Rouse, N. Strawn, A. Watkins, Topological and statistical behavior classifiers for tracking applications. arXiv preprint arXiv:1406.0214 (2014)
[3] A. Berlinet, C. Thomas-Agnan, \(Reproducing Kernel Hilbert Spaces in Probability and Statistics\) (Kluwer Academic Publishers, Boston, MA, 2004) · Zbl 1145.62002 · doi:10.1007/978-1-4419-9096-9
[4] H. Boche, M. Guillemard, G. Kutyniok, F. Philipp, Signal analysis with frame theory and persistent homology, in \(Proceedings of Sampling Theory and Applications (SampTA’13)\) (2013)
[5] P. Bubenik, Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16, 77-102 (2015) · Zbl 1337.68221
[6] M.D. Buhmann, \(Radial Basis Functions\) (Cambridge University Press, Cambridge, UK, 2003) · Zbl 1038.41001 · doi:10.1017/CBO9780511543241
[7] G. Carlsson, Topology and data. Am. Math. Soc. 46(2), 255-308 (2009) · Zbl 1172.62002 · doi:10.1090/S0273-0979-09-01249-X
[8] M. Carrière, S.Y. Oudot, M. Ovsjanikov, Stable topological signatures for points on 3d shapes. Comput. Graph. Forum 34(5), 1-12 (2015) · doi:10.1111/cgf.12692
[9] F. Chazal, V. de Silva, M. Glisse, S. Oudot, The structure and stability of persistence modules. arXiv:1207.3674 (2012) · Zbl 1362.55002
[10] E. Cheney, \(Introduction to Approximation Theory\), 2nd edn. (McGraw Hill, New York, 1982) · Zbl 0535.41001
[11] W. Cheney, W. Light, \(A Course in Approximation Theory\) (Brooks/Cole Publishing, Pacific Grove, 2000)
[12] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of persistence diagrams. Discret. Comput. Geom. 37(1), 103-120 (2007) · Zbl 1117.54027 · doi:10.1007/s00454-006-1276-5
[13] J. Dieudonné, \(Éléments D’Analyse. Tome 1\) (Gauthier-Villars, Paris, 1971) · Zbl 0217.00101
[14] H. Edelsbrunner, J. Harer, Persistent homology - a survey, in \(Surveys on Discrete and Computational Geometry: Twenty Years Later: AMS-IMS-SIAM Joint Summer Research Conference\), June 18-22, 2006, Snowbird, Utah, vol. 453 (American Mathematical Society, Providence, RI, 2008), p. 257 · Zbl 1145.55007
[15] H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification, in \(Proceedings of 41st Annual IEEE Symposium on Foundations Computer Science\), pp. 454-463, 2000 · Zbl 1011.68152
[16] M. Fornasier, H. Rauhut, Continuous frames, function spaces, and the discretization problem. J. Fourier Anal Appl. 11(3), 245-287 (2005) · Zbl 1093.42020 · doi:10.1007/s00041-005-4053-6
[17] K. Fukumizu, F.R. Bach, M.I. Jordan, Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. J. Mach. Learn. Res. 5, 73-99 (2004) · Zbl 1222.62069
[18] J. González, M. Guillemard, Algunas aplicaciones de la topología algebráica, in \(Aportaciones Matemáticas, Sociedad Matemática Mexicana\), vol. 42, pp. 153-170, 2011 · Zbl 1323.55005
[19] M. Guillemard, A. Iske, Signal filtering and persistent homology: an illustrative example, in \(Proceedings of Sampling Theory and Applications (SampTA’11)\), 2011
[20] M. Griebel, C. Rieger, Reproducing kernel Hilbert spaces for parametric partial differential equations. SIAM/ASA J. Uncertain. Quantif. (to appear). INS Preprint No. 1511, Institut für Numerische Simulation, Universität Bonn, 2015
[21] J.R. Higgins, Sampling in reproducing kernel Hilbert space, in \(New Perspectives on Approximation and Sampling Theory\), ed. by A.I. Zayed, G. Schmeisser (Springer International Publishing Switzerland, Heidelberg, 2014), pp. 23-38 · Zbl 1322.46019
[22] T. Hofmann, B. Schölkopf, A.J. Smola, Kernel methods in machine learning. Ann. Stat. 36(3), 1171-1220 (2008) · Zbl 1151.30007 · doi:10.1214/009053607000000677
[23] A. Iske, \(Multiresolution Methods in Scattered Data Modelling\) (Springer, Berlin, 2004) · Zbl 1057.65004 · doi:10.1007/978-3-642-18754-4
[24] T. Jordão, V.A. Menegatto, Integral operators generated by multi-scale kernels. J. Complex. 26(2), 187-199 (2010) · Zbl 1190.45011 · doi:10.1016/j.jco.2010.01.001
[25] A.A. Kirillov, A.D. Gvishiani, \(Theorems and Problems in Functional Analysis\) (Springer, Berlin, 1982) · Zbl 0486.46002 · doi:10.1007/978-1-4613-8153-2
[26] G. Kusano, K. Fukumizu, Y. Hiraoka, Persistence weighted Gaussian kernel for topological data analysis. arXiv preprint arXiv:1601.01741 (2016) · Zbl 1472.62179
[27] H. Meschkowski, \(Hilbertsche Räume mit Kernfunktion\) (Springer, Berlin, 1962) · Zbl 0103.08802 · doi:10.1007/978-3-642-94848-0
[28] H. Minh, P. Niyogi, Y. Yao, Mercer’s theorem, feature maps, and smoothing, in \(Proceedings of the 19th Annual Conference on Learning Theory (COLT)\) (2006) · Zbl 1143.68554
[29] P. Niyogi, S. Smale, S. Weinberger, Finding the homology of submanifolds with high confidence from random samples. Discret. Comput. Geom. 39(1), 419-441 (2008) · Zbl 1148.68048 · doi:10.1007/s00454-008-9053-2
[30] R. Opfer, Tight frame expansions of multiscale reproducing kernels in Sobolev spaces. Appl. Comput. Harmon. Anal. 20, 357-374 (2006) · Zbl 1094.42029 · doi:10.1016/j.acha.2005.05.003
[31] N. Otter, M.A. Porter, U. Tillmann, P. Grindrod, H.A. Harrington, A roadmap for the computation of persistent homology. arXiv preprint arXiv:1506.08903 (2015)
[32] M.J.D. Powell, \(Approximation Theory and Methods\) (Cambridge University Press, Cambridge, 1981) · Zbl 0453.41001
[33] A. Rakotomamonjy, S. Canu, Frames, reproducing kernels, regularization and learning. J. Mach. Learn. Res. 6, 1485-1515 (2005) · Zbl 1222.68284
[34] J. Reininghaus, S. Huber, U. Bauer, R. Kwitt, A stable multi-scale kernel for topological machine learning, in \(2015 (CVPR ’15)\), Boston, MA, June (2015)
[35] R. Schaback, Native Hilbert spaces for radial basis functions I. Int. Ser. Numer. Math. 132, 255-282 (1999) · Zbl 0944.46017
[36] R. Schaback, A unified theory of radial basis functions: native Hilbert spaces for radial basis functions II. J. Comput. Appl. Math. 121(1-2), 165-177 (2000) · Zbl 0984.46014 · doi:10.1016/S0377-0427(00)00345-9
[37] R. Schaback, Kernel-Based Meschless Methods (Lecture Notes). Institut für Numerische und Angewandte Mathematik (NAM), Georg-August-Universität Göttingen (2007)
[38] A. Shadrin, \(Approximation Theory (Lecture Notes)\) (DAMTP University of Cambridge, Cambridge, 2005)
[39] I. Steinwart, D. Hush, C. Scovel, An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels. IEEE Trans. Inf. Theory 52(10), 4635-4643 (2006) · Zbl 1320.68148 · doi:10.1109/TIT.2006.881713
[40] M. van der Laan, Signal sampling techniques for data acquisition in process control. PhD thesis, University of Groningen (1995)
[41] H. Wendland, \(Scattered Data Approximation\) (Cambridge University Press, Cambridge, 2005) · Zbl 1075.65021
[42] A. Zomorodian, G. Carlsson, Computing persistent homology. Discrete Comput. Geom. 33(2), 249-274 (2005) · Zbl 1069.55003 · doi:10.1007/s00454-004-1146-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.