×

Approximate solutions of fuzzy differential equations of fractional order using modified reproducing kernel Hilbert space method. (English) Zbl 1412.34007

Summary: In this paper, we use the modified reproducing kernel Hilbert space method to approximate the solution of fuzzy differential equations of fractional order. Using this method, we construct a new algorithm to approximate the solution of such differential equations. The proposed algorithm produces solutions in terms of interval-valued fuzzy numbers. Two numerical examples are tested and the results showed that the proposed algorithm is able to produce solutions that approach to the exact solutions. It concludes that the proposed algorithm can be considered as a modern algorithm that complements to the existing ones.

MSC:

34A08 Fractional ordinary differential equations
34A07 Fuzzy ordinary differential equations
47B32 Linear operators in reproducing-kernel Hilbert spaces (including de Branges, de Branges-Rovnyak, and other structured spaces)
Full Text: DOI

References:

[1] Arqub, O. Abu, An iterative method for solving fourth-order boundary value problems of mixed type integro-differential equations, J. Comput. Anal. Appl., 8, 857-874 (2015) · Zbl 1329.65176
[2] Arqub, O. Abu; Al-Smadi, M.; Momani, S., Application of reproducing kernel method for solving nonlinear Fredholm- Volterra integrodifferential equations, Abstr. Appl. Anal., 2012, 1-16 (2012) · Zbl 1253.65200 · doi:10.1155/2012/839836
[3] Agarwal, R. P.; Lakshmikantham, V.; Nieto, J. J., On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72, 2859-2862 (2010) · Zbl 1188.34005 · doi:10.1016/j.na.2009.11.029
[4] Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S., Solving fuzzy fractional differential equations using Zadeh’s extension principle, Scientific World J., 2013, 1-11 (2013) · doi:10.1155/2013/454969
[5] Ahmadian, A.; Salahshour, S.; Chan, C. S., A Runge-Kutta method with reduced number of function evaluations to solve hybrid fuzzy differential equations, Soft Comput., 19, 1051-1062 (2015) · Zbl 1355.65093 · doi:10.1007/s00500-014-1314-9
[6] Ahmadian, A.; Senu, N.; Larki, F.; Salahshour, S., A legendre approximation for solving a fuzzy fractional drug transduction model into the bloodstream, Recent Advances on Soft Computing and Data Mining, Springer International Publishing, 2014, 25-34 (2014) · Zbl 1298.92046 · doi:10.1007/978-3-319-07692-8_3
[7] Ahmadian, A.; Suleiman, M.; Salahshour, S.; Baleanu, D., A Jacobi operational matrix for solving a fuzzy linear fractional differential equation, Adv. Difference Equ., 2013, 1-29 (2013) · Zbl 1380.34004 · doi:10.1186/1687-1847-2013-104
[8] Allahviranloo, T.; Armand, A.; Gouyandeh, Z., Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, J. Intell. Fuzzy Systems, 26, 1481-1490 (2014) · Zbl 1305.34004 · doi:10.3233/IFS-130831
[9] Alomari, A. K.; Awawdeh, F.; Tahat, N.; Ahmad, F. Bani; Shatanawi, W., Multiple solutions for fractional differential equations: analytic approach, Appl. Math. Comput., 219, 8893-8903 (2013) · Zbl 1291.65204 · doi:10.1016/j.amc.2013.03.066
[10] Alpay, D.; Bolotnikov, V.; Kaptanoğlu, H. T., The Schur algorithm and reproducing kernel Hilbert spaces in the ball, Linear Algebra Appl., 342, 163-186 (2002) · Zbl 1015.47008 · doi:10.1016/S0024-3795(01)00448-7
[11] Al-Smadi, M.; Arqub, O. Abu; Momani, S., A computational method for two-point boundary value problems of fourth-order mixed integrodifferential equations, Math. Probl. Eng., 2013, 1-10 (2013) · Zbl 1299.65297 · doi:10.1155/2013/832074
[12] Arshad, S.; Lupulescu, V., On the fractional differential equations with uncertainty, Nonlinear Anal., 74, 3685-3693 (2011) · Zbl 1219.34004 · doi:10.1016/j.na.2011.02.048
[13] Babolian, E.; Sadeghi, H.; Javadi, S., Numerically solution of fuzzy differential equations by Adomian method, [[Numerical solution of fuzzy differential equations by the Adomian method]] Appl. Math. Comput., 149, 547-557 (2004) · Zbl 1038.65056 · doi:10.1016/S0096-3003(03)00160-7
[14] Bartokos, S., Reproducing kernel Hilbert spaces, Diplomarbeit, University of Vienna, Fakultät für Mathematik BetreuerIn: Haslinger, Friedrich (2011)
[15] Buckley, J. J.; Eslami, E.; Feuring, T., Fuzzy mathematics in economics and engineering, Studies in Fuzziness and Soft Computing, Physica-Verlag, Heidelberg (2002) · Zbl 0986.03039
[16] Buckley, J. J.; Qu, Y., Solving systems of linear fuzzy equations, Fuzzy Sets and Systems, 43, 33-43 (1991) · Zbl 0741.65023 · doi:10.1016/0165-0114(91)90019-M
[17] Chalco-Cano, Y.; Román-Flores, H., Some remarks on fuzzy differential equations via differential inclusions, Fuzzy Sets and Systems, 230, 3-20 (2013) · Zbl 1314.34008 · doi:10.1016/j.fss.2013.04.017
[18] Cui, M.-G.; Lin, Y.-Z., Nonlinear numerical analysis in the reproducing kernel space, Nova Science Publishers, Inc., New York (2009) · Zbl 1165.65300
[19] Daftardar-Gejji, V.; Sukale, Y.; Bhalekar, S., Solving fractional delay differential equations: a new approach, Fract. Calc. Appl. Anal., 18, 400-418 (2015) · Zbl 1317.34159 · doi:10.1515/fca-2015-0026
[20] Oliveira, E. C. de; Machado, J. A. Tenreiro, A review of definitions for fractional derivatives and integral, Math. Probl. Eng., 2014, 1-6 (2014) · Zbl 1407.26013 · doi:10.1155/2014/238459
[21] Gu, C., Penalized likelihood estimation: convergence under incorrect model, Statist. Probab. Lett., 36, 359-364 (1998) · Zbl 0889.62032 · doi:10.1016/S0167-7152(97)00082-5
[22] Higgins, J. R., Sampling in reproducing kernel Hilbert space, New perspectives on approximation and sampling theory, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 23-38 (2014) · Zbl 1322.46019 · doi:10.1007/978-3-319-08801-3_2
[23] Hult, H., Approximating some Volterra type stochastic integrals with applications to parameter estimation, Stochastic Process. Appl., 105, 1-32 (2003) · Zbl 1075.60532 · doi:10.1016/S0304-4149(02)00250-8
[24] Khader, M. M., Numerical treatment for solving fractional logistic differential equation, Differ. Equ. Dyn. Syst., 24, 99-107 (2016) · Zbl 1333.65077 · doi:10.1007/s12591-014-0207-9
[25] Khastan, A.; Ivaz, K., Numerical solution of fuzzy differential equations by Nyström method, Chaos Solitons Fractals, 41, 859-868 (2009) · Zbl 1198.65113 · doi:10.1016/j.chaos.2008.04.012
[26] Khodadadi, E.; Çelik, E., The variational iteration method for fuzzy fractional differential equations with uncertainty, Fixed Point Theory Appl., 2013, 1-7 (2013) · Zbl 1285.34008 · doi:10.1186/1687-1812-2013-13
[27] Lazarević, M. P.; Milan, R. R.; Tomislav, B. S., Introduction to fractional calculus with brief historical background, Adv. Top. Appl. Fractional Calc. Control Probl. Syst. Stab. Model., 3, 82-85 (2014)
[28] Li, C.-L.; Cui, M.-G., The exact solution for solving a class nonlinear operator equations in the reproducing kernel space, Appl. Math. Comput., 143, 393-399 (2003) · Zbl 1034.47030 · doi:10.1016/S0096-3003(02)00370-3
[29] Mazandarani, M.; Kamyad, A. V., Modified fractional Euler method for solving fuzzy fractional initial value problem, Commun. Nonlinear Sci. Numer. Simul., 18, 12-21 (2013) · Zbl 1253.35208 · doi:10.1016/j.cnsns.2012.06.008
[30] Mercer, J., Functions of positive and negative type, and their connection with the theory of integral equations, Trans. London Philosophical Soc. A, 209, 415-446 (1909) · JFM 40.0408.02 · doi:10.1098/rsta.1909.0016
[31] Mohammed, O. H.; Fadhel, F. S.; Abdul-Khaleq, F. A., Differential transform method for solving fuzzy fractional initial value problems, J. Basrah Res., 37, 158-170 (2011)
[32] Momani, S.; Odibat, Z., Numerical approach to differential equations of fractional order, J. Comput. Appl. Math., 207, 96-110 (2007) · Zbl 1119.65127 · doi:10.1016/j.cam.2006.07.015
[33] Salah, A.; Khan, M.; Gondal, M. A., A novel solution procedure for fuzzy fractional heat equations by homotopy analysis transform method, Neural Comput. Appl., 23, 269-271 (2013) · doi:10.1007/s00521-012-0855-z
[34] Salahshour, S.; Allahviranloo, T., Application of fuzzy differential transform method for solving fuzzy Volterra integral equations, Appl. Math. Model., 37, 1016-1027 (2013) · Zbl 1351.45005 · doi:10.1016/j.apm.2012.03.031
[35] Salahshour, S.; Allahviranloo, T.; Abbasbandy, S., Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci. Numer. Simul., 17, 1372-1381 (2012) · Zbl 1245.35146 · doi:10.1016/j.cnsns.2011.07.005
[36] Strauss, D. J.; Steidl, G., Hybrid wavelet-support vector classification of waveforms, J. Comput. Appl. Math., 148, 375-400 (2002) · Zbl 1013.65148 · doi:10.1016/S0377-0427(02)00557-5
[37] Yang, L.-H.; Cui, M.-G., New algorithm for a class of nonlinear integro-differential equations in the reproducing kernel space, Appl. Math. Comput., 174, 942-960 (2006) · Zbl 1094.65136 · doi:10.1016/j.amc.2005.05.026
[38] Yao, K.; Chen, X.-W., A numerical method for solving uncertain differential equations, J. Intell. Fuzzy Systems, 25, 825-832 (2013) · Zbl 1291.65025 · doi:10.3233/IFS-120688
[39] Zhang, Y.; Wang, G.-Y., Time domain methods for the solutions of n-order fuzzy differential equations, Fuzzy Sets and Systems, 94, 77-92 (1998) · Zbl 0926.34046 · doi:10.1016/S0165-0114(96)00235-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.