×

High order locally one-dimensional methods for solving two-dimensional parabolic equations. (English) Zbl 1448.65094

Summary: Based on the locally one-dimensional strategy, we propose two high order finite difference schemes for solving two-dimensional linear parabolic equations. In the first method, fourth order approximation in space and \((2,2)\) Padé formula in time are considered. These lead to a fourth order finite difference scheme in both space and time. For the second method, we employ sixth order approximation in space and \((3,3)\) Padé formula in time. This yields a novel sixth order scheme in both space and time. The methods are proved to be unconditionally stable, and the Sheng-Suzuki barrier is successfully avoided. Numerical experiments are given to illustrate our conclusions as well as computational effectiveness.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations

References:

[1] Sun, H.W., Zhang, J.: A high-order compact boundary value method for solving one-dimensional heat equations. Numer. Methods Partial Differ. Equ. 9, 846-857 (2003) · Zbl 1038.65084 · doi:10.1002/num.10076
[2] Lin, Y.X., Gao, J., Xiao, M.Q.: A high-order finite difference method for 1D nonhomogeneous heat equation. Numer. Methods Partial Differ. Equ. 25, 327-346 (2009) · Zbl 1220.65115 · doi:10.1002/num.20345
[3] Zhao, J., Dai, W., Niu, T.C.: Fourth order compact schemes of a heat conduction problem with Neumann boundary conditions. Numer. Methods Partial Differ. Equ. 23, 949-959 (2007) · Zbl 1132.65083 · doi:10.1002/num.20200
[4] Li, J., Chen, Y., Liu, G.: High order compact ADI methods for parabolic equations. Comput. Math. Appl. 52, 1343-1356 (2006) · Zbl 1121.65092 · doi:10.1016/j.camwa.2006.11.010
[5] Bialecki, B., De Frutos, J.: ADI spectral collocation methods for parabolic problems. J. Comput. Phys. 229, 5182-5193 (2010) · Zbl 1194.65118 · doi:10.1016/j.jcp.2010.03.033
[6] Zhou, H., Wu, Y.J., Tian, W.: Extrapolation algorithm of compact ADI approximation for two-dimensional parabolic equations. Appl. Math. Comput. 219, 2875-2884 (2012) · Zbl 1309.65102
[7] Qin, J.: The new alternating direction implicit difference methods for solving three-dimensional parabolic equations. Appl. Math. Model. 34, 890-897 (2010) · Zbl 1185.65151 · doi:10.1016/j.apm.2009.07.006
[8] Wang, Y.M.: Error and extrapolation of a compact LOD method for parabolic differential equations. J. Comput. Appl. Math. 235, 1367-1382 (2011) · Zbl 1205.65252 · doi:10.1016/j.cam.2010.08.024
[9] Wang, T., Wang, Y.M.: A higher-order compact LOD method and its extrapolations for nonhomogeneous parabolic differential equations. Appl. Math. Comput. 237, 512-530 (2014) · Zbl 1334.65140
[10] Wang, T.: Alternating direction finite volume element methods for 2D parabolic partial difference differential equations. Numer. Methods Partial Differ. Equ. 24, 24-40 (2008) · Zbl 1135.65037 · doi:10.1002/num.20224
[11] Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equation. J. Soc. Ind. Appl. Math. 3, 28-41 (1955) · Zbl 0067.35801 · doi:10.1137/0103003
[12] Dehghan, M.: A new ADI technique for two-dimensional parabolic equation with an integral condition. Comput. Math. Appl. 43, 1477-1488 (2002) · Zbl 1001.65094 · doi:10.1016/S0898-1221(02)00113-X
[13] Daoud, D.S.: On the numerical solution of multi-dimensional parabolic problem by the additive splitting up method. Appl. Math. Comput. 162, 197-210 (2005) · Zbl 1059.65071
[14] Douglas, J., Kimy, S.: Improved accuracy for locally one-dimensional methods for parabolic equations. Math. Models Methods Appl. Sci. 11, 1563-1579 (2001) · Zbl 1012.65095 · doi:10.1142/S0218202501001471
[15] Dai, W., Nasar, R.: Compact finite difference scheme for solving parabolic differential equations. Numer. Methods Partial Differ. Equ. 18, 129-141 (2002) · Zbl 1004.65086 · doi:10.1002/num.1037
[16] Karaa, S.: An accurate LOD scheme for two-dimensional parabolic problems. Appl. Math. Comput. 27, 209-224 (2005) · Zbl 1103.65094
[17] Zhao, J., Dai, W.Z., Zhang, S.Y.: Fourth order compact schemes for solving multi-dimensional heat conduction problems with Neumann boundary conditions. Numer. Methods Partial Differ. Equ. 24, 165-178 (2008) · Zbl 1185.65157 · doi:10.1002/num.20255
[18] Hiroaki, N.: First-, second-, and third-order finite-volume schemes for diffusion. J. Comput. Phys. 256, 791-805 (2014) · Zbl 1349.65380 · doi:10.1016/j.jcp.2013.09.024
[19] Vu, T.L., Alexander, O.: Explicit exponential Runge-Kutta methods of high order for parabolic problems. J. Comput. Appl. Math. 259, 262-361 (2014) · Zbl 1330.65111
[20] Gao, F., Chi, C.M.: Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation. Appl. Math. Comput. 187, 1272-1276 (2007) · Zbl 1114.65347
[21] Liu, H.W., Liu, L.B., Chen, Y.P.: A semi-discretization method based on quartic splines for solving one-space-dimensional hyperbolic equations. Appl. Math. Comput. 210, 508-514 (2009) · Zbl 1162.65384
[22] Piao, X.F., Choi, H., Kim, S.D.: A fast singly diagonally implicit Runge-Kutta method for solving 1D unsteady convection-diffusion equations. Numer. Methods Partial Differ. Equ. 30, 788-812 (2013) · Zbl 1301.65101 · doi:10.1002/num.21832
[23] Zhang, Y.X.: [3,3]\([3, 3]\) Padé approximation method for solving space fractional Fokker-Planck equations. Appl. Math. Lett. 35, 109-114 (2014) · Zbl 1320.65134 · doi:10.1016/j.aml.2013.11.004
[24] Hao, W., Zhu, S.: Domain decomposition schemes with high-order accuracy and unconditional stability. Appl. Math. Comput. 219, 6170-6181 (2013) · Zbl 1273.65136
[25] Liu, D., Kuang, W., Tangborn, A.: High-order compact implicit difference methods for parabolic equations in geodynamo simulation. Adv. Math. Phys. 2009, Article ID 568296 (2009). https://doi.org/10.1155/2009/568296 · Zbl 1200.86010 · doi:10.1155/2009/568296
[26] Liu, D., Chen, Q., Wang, Y.: A sixth order accuracy solution to a system of nonlinear differential equations with coupled compact method. J. Comput. Eng. 2013, Article ID 432192 (2013). https://doi.org/10.1155/2013/432192 · doi:10.1155/2013/432192
[27] Sheng, Q.: Solving linear partial differential equations by exponential splitting. IMA J. Numer. Anal. 9, 199-212 (1989) · Zbl 0676.65116 · doi:10.1093/imanum/9.2.199
[28] Hirsh, R.S.: High order accurate difference solutions of fluid mechanics problem by a compact differencing technique. J. Comput. Phys. 19, 90-109 (1975) · Zbl 0326.76024 · doi:10.1016/0021-9991(75)90118-7
[29] Cuyt, A.: Padé Approximants for Operators: Theory and Applications. Lecture Notes in Mathematics. Springer, Berlin (1984) · Zbl 0538.41024 · doi:10.1007/BFb0099706
[30] Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd edn. Oxford University Press, London (1985) · Zbl 0576.65089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.