×

Coupled optoelectronic simulation and optimization of thin-film photovoltaic solar cells. (English) Zbl 07504712

J. Comput. Phys. 407, Article ID 109242, 24 p. (2020); corrigendum ibid. 418, Article ID 109561, 1 p. (2020).
Summary: A design tool was formulated for optimizing the efficiency of inorganic, thin-film, photovoltaic solar cells. The solar cell can have multiple semiconductor layers in addition to antireflection coatings, passivation layers, and buffer layers. The solar cell is backed by a metallic grating which is periodic along a fixed direction. The rigorous coupled-wave approach is used to calculate the electron-hole-pair generation rate. The hybridizable discontinuous Galerkin method is used to solve the drift-diffusion equations that govern charge-carrier transport in the semiconductor layers. The chief output is the solar-cell efficiency which is maximized using the differential evolution algorithm to determine the optimal dimensions and bandgaps of the semiconductor layers.

MSC:

76-XX Fluid mechanics
82-XX Statistical mechanics, structure of matter

Software:

Solcore

References:

[1] Nelson, J., The Physics of Solar Cells (2003), Imperial College Press: Imperial College Press London, United Kingdom
[2] Fonash, S. J., Solar Cell Device Physics (2010), Academic Press: Academic Press Burlington, MA, USA
[3] Storn, R.; Price, K., Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11, 341-359 (1997) · Zbl 0888.90135
[4] Das, S.; Suganthan, P. N., Differential evolution: a survey of the state-of-the-art, IEEE Trans. Evol. Comput., 15, 4-31 (2011)
[5] Lalanne, P.; Morris, G. M., Highly improved convergence of the coupled-wave method for TM polarization, J. Opt. Soc. Am. A, 13, 779-784 (1996)
[6] Lalanne, P., Convergence performance of the coupled-wave and the differential methods for thin gratings, J. Opt. Soc. Am. A, 14, 1583-1591 (1997)
[7] Polo, J. A.; Mackay, T. G.; Lakhtakia, A., Electromagnetic Surface Waves: A Modern Perspective (2013), Elsevier: Elsevier Waltham, MA, USA
[8] Civiletti, B. J.; Anderson, T. H.; Ahmad, F.; Monk, P. B.; Lakhtakia, A., Optimization approach for optical absorption in three-dimensional structures including solar cells, Opt. Eng., 57, Article 057101 pp. (2018)
[9] Ahmad, F.; Anderson, T. H.; Civiletti, B. J.; Monk, P. B.; Lakhtakia, A., On optical-absorption peaks in a nonhomogeneous thin-film solar cell with a two-dimensional periodically corrugated metallic backreflector, J. Nanophotonics, 12, Article 016017 pp. (2018)
[10] Brinkman, D.; Fellner, K.; Markowich, P. A.; Wolfram, M.-T., A drift-diffusion-reaction model for excitonic photovoltaic bilayers: asymptotic analysis and a 2-D HDG finite-element scheme, Math. Models Methods Appl. Sci., 23, 839-872 (2013) · Zbl 1264.35118
[11] Lehrenfeld, C., Hybrid Discontinuous Galerkin Methods for Solving Incompressible Flow Problems (2010), Rheinisch-Westfaälischen Technischen Hochschule: Rheinisch-Westfaälischen Technischen Hochschule Aachen, Germany, Diplomingenieur Thesis
[12] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47, 1319-1365 (2009) · Zbl 1205.65312
[13] Fu, G.; Qiu, W.; Zhang, W., An analysis of HDG methods for convection-dominated diffusion problems, ESAIM: Math. Model. Numer. Anal., 49, 225-256 (2015) · Zbl 1314.65142
[14] Jaluria, Y., Computer Methods for Engineering (1996), Taylor & Francis: Taylor & Francis Washington, DC, USA
[15] Anderson, T. H.; Mackay, T. G.; Lakhtakia, A., Enhanced efficiency of Schottky-barrier solar cell with periodically nonhomogeneous indium gallium nitride layer, J. Photon. Energy, 7, Article 014502 pp. (2017)
[16] Chen, Z., Finite Element Methods and Their Applications (2005), Springer: Springer Berlin, Germany · Zbl 1082.65118
[17] Anderson, T. H.; Lakhtakia, A.; Monk, P. B., Optimization of nonhomogeneous indium-gallium-nitride Schottky-barrier thin-film solar cells, J. Photon. Energy, 8, Article 034501 pp. (2018)
[18] Krč, J.; Topič, M., Optical Modeling and Simulation of Thin-Film Photovoltaic Devices (2013), CRC Press: CRC Press Boca Raton, FL, USA
[19] Saiprasad, N.; Castelletto, S.; Boretti, A., Optoelectronics modelling of thin film solar cells, (Jazar, R. N.; Dai, L., Nonlinear Approaches in Engineering Applications (2016), Springer: Springer Cham, Switzerland), 331-350
[20] Alonso-Álvarez, D.; Wilson, T.; Pearce, P.; Fuührer, M.; Farrell, D.; Ekins-Daukes, N., Solcore: a multi-scale, Python-based library for modelling solar cells and semiconductor materials, J. Comput. Electron., 17, 1099-1123 (2018)
[21] Goodman, J. W., Introduction to Fourier Optics (1968), McGraw-Hill: McGraw-Hill New York, NY, USA
[22] (Maystre, D., Selected Papers on Diffraction Gratings (1992), SPIE Optical Engineering Press: SPIE Optical Engineering Press Bellingham, WA, USA)
[23] Moharam, M. G.; Pommet, D. A.; Grann, E. B.; Gaylord, T. K., Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach, J. Opt. Soc. Am. A, 12, 1077-1086 (1995)
[24] Solano, M. E.; Faryad, M.; Lakhtakia, A.; Monk, P. B., Comparison of rigorous coupled-wave approach and finite element method for photovoltaic devices with periodically corrugated metallic backreflector, J. Opt. Soc. Am. A, 31, 2275-2284 (2014)
[25] Shuba, M. V.; Faryad, M.; Solano, M. E.; Monk, P. B.; Lakhtakia, A., Adequacy of the rigorous coupled-wave approach for thin-film silicon solar cells with periodically corrugated metallic backreflectors: spectral analysis, J. Opt. Soc. Am. A, 32, 1222-1230 (2015)
[26] Lokar, Z.; Lipovsek, B.; Topic, M.; Krc, J., Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells, Beilstein J. Nanotechnol., 9, 2315-2329 (2018)
[27] Li, L., Use of Fourier series in the analysis of discontinuous periodic structures, J. Opt. Soc. Am. A, 13, 1870-1876 (1996)
[28] National Renewable Energy Laboratory, Reference Solar Spectral Irradiance: Air Mass 1.5 (5 June 2018)
[29] Dewan, R.; Marinkovic, M.; Noriega, R.; Phadke, S.; Salleo, A.; Knipp, D., Light trapping in thin-film silicon solar cells with submicron surface texture, Opt. Express, 17, 23058-23065 (2009)
[30] Solano, M.; Faryad, M.; Hall, A. S.; Mallouk, T. E.; Monk, P. B.; Lakhtakia, A., Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell backed by a metallic surface-relief grating, Appl. Opt.. Appl. Opt., Appl. Opt., 54, 398-979 (2015), Erratum:
[31] Anttu, N.; Dagytė, V.; Zeng, X.; Otnes, G.; Borgström, M., Absorption and transmission of light in III-V nanowire arrays for tandem solar cell applications, Nanotechnology, 28, Article 205203 pp. (2017)
[32] Schöberl, J., Netgen/Ngsolv. (5 June 2018)
[33] Ainsworth, M.; Zhu, J. Z.; Craig, A. W.; Zienkiewicz, O. C., Analysis of the Zienkiewicz-Zhu a-posteriori error estimator in the finite element method, Int. J. Numer. Methods Eng., 28, 2161-2174 (1989) · Zbl 0716.73082
[34] Chen, Z.; Wu, H., An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41, 799-826 (2003) · Zbl 1049.78018
[35] Brezzi, F.; Marini, L. D.; Micheletti, S.; Pietra, P.; Sacco, R.; Wang, S., Discretization of semiconductor device problems (I), (Schilders, W. H.A.; ter Maten, E. J.W., Handbook of Numerical Analysis: Numerical Methods for Electrodynamic Problems (2005), Elsevier: Elsevier Amsterdam, the Netherlands), 317-342 · Zbl 1179.82150
[36] Foster, D. H.; Costa, T.; Peszynska, M.; Schneider, G., Multiscale modeling of solar cells with interface phenomena, J. Coupled Syst. Multiscale Dyn., 1, 179-204 (2013)
[37] Yang, K.; East, J. R.; Haddad, G. I., Numerical modeling of abrupt heterojunctions using a thermionic-field emission boundary condition, Solid-State Electron., 36, 321-330 (1993)
[38] Stroud, A.; Secrest, D., Gaussian Quadrature Formulae (1973), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ, USA
[39] Isaacson, E.; Keller, H. B., Analysis of Numerical Methods (1966), Wiley: Wiley New York, NY, USA · Zbl 0168.13101
[40] Nocedal, J.; Wright, S. J., Numerical Optimization (2006), Springer: Springer New York, NY, USA · Zbl 1104.65059
[41] Cohen, G.; Pernet, S., Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations (2017), Springer: Springer Dordrecht, the Netherlands · Zbl 1360.65233
[42] Douglas, J.; Dupont, T., The effect of interpolating the coefficients in nonlinear parabolic Galerkin procedures, Math. Comput., 20, 360-389 (1975) · Zbl 0311.65060
[43] Frisk, C.; Platzer-Björkman, C.; Olsson, J.; Szaniawski, P.; Wätjen, J. T.; Fjällström, V.; Salomé, P.; Edoff, M., Optimizing Ga-profiles for highly efficient Cu(In, Ga)Se_2 thin film solar cells in simple and complex defect models, J. Phys. D, Appl. Phys., 47, Article 485104 pp. (2014)
[44] (6 July 2017), Differential Evolution Algorithm
[45] Anderson, L. M., Harnessing surface plasmons for solar energy conversion, Proc. SPIE, 408, 172-178 (1983)
[46] Sheng, P.; Bloch, A. N.; Stepleman, R. S., Wavelength-selective absorption enhancement in thin-film solar cells, Appl. Phys. Lett., 43, 579-581 (1983)
[47] Heine, C.; Morf, R. H., Submicrometer gratings for solar energy applications, Appl. Opt., 34, 2476-2482 (1995)
[48] Khaleque, T.; Magnusson, R., Light management through guided-mode resonances in thin-film silicon solar cells, J. Nanophotonics, 8, Article 083995 pp. (2014)
[49] Ahmad, F.; Anderson, T. H.; Monk, P. B.; Lakhtakia, A., Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading, Appl. Opt., 58, 6067-6078 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.