×

Rigidity results for Riemannian spin\(^c\) manifolds with foliated boundary. (English) Zbl 1386.53050

The paper under review applies to Kähler-Einstein manifolds the program of studying rigidity problems using the spectral properties of the Dirac operator on a Riemannian spin manifold. Such results were given in [O. Hijazi et al., Ann. Global Anal. Geom. 23, No. 3, 247–264 (2003; Zbl 1032.53040); Math. Res. Lett. 8, No. 1–2, 195–208 (2001; Zbl 0988.53019); O. Hijazi and S. Montiel, Math. Z. 244, No. 2, 337–347 (2003; Zbl 1035.53066)], using S. Raulot’s correspondence [Lett. Math. Phys. 86, No. 2–3, 177–192 (2008; Zbl 1204.53037)] of parallel spinors on an \((n+2)\)-dimensional manifold \(N\) with solutions \(\phi\) of the Dirac equation \(D_M \phi = \frac{n+1}{n}H_0 \phi\) on its boundary \(M\). In [J. Geom. 107, No. 3, 533–555 (2016; Zbl 1362.53058)] the authors extended this correspondence to the case of a spin manifold \(N\) such that its boundary \(M\) is endowed with a Riemannian flow given by a unit vector field. They obtained similar rigidity results in this case.
In this paper the authors extend this correspondence to the case of a \(\mathrm{spin}^c\) manifold \(N\). They formulate a \(\mathrm{spin}^c\) and basic version of the Dirac equation and obtain a certain estimate for an arbitrary solution, relating it with the mean curvature of \(M\) and the O’Neill tensor field associated with the flow. It follows from the classification of \(\mathrm{spin}^c\) manifolds [A. Moroianu, Commun. Math. Phys. 187, No. 2, 417–427 (1997; Zbl 0888.53035)] stating that, in the limiting case, the following cases can occur: When \(n\) is even, \(N\) is a domain in some Kähler-Einstein manifold with nonnegative scalar curvature. When \(n\) is odd, \(N\) is the product of a Kähler-Einstein manifold with \(\mathbb R\) or \(S^1\). Then they establish the appropriate version of the correspondence with the parallel spinors in each case.

MSC:

53C27 Spin and Spin\({}^c\) geometry
53C12 Foliations (differential geometric aspects)
53C24 Rigidity results

References:

[1] Bär, C.: On nodal sets for Dirac and Laplace operators. Commun. Math. Phys. 188, 709-721 (1997) · Zbl 0888.47028 · doi:10.1007/s002200050184
[2] Bär, C.: Extrinsic bounds for eigenvalues of the Dirac operator. Ann. Glob. Anal. Geom. 16, 573-596 (1998) · Zbl 0921.58065 · doi:10.1023/A:1006550532236
[3] Bourguignon, J.-P., Hijazi, O., Milhorat, J.-L., Moroianu, A., Moroianu, S.: A Spinorial Approach to Riemannian and Conformal Geometry. EMS Monographs in Mathematics. European Mathematical Society, Zürich (2015) · Zbl 1348.53001
[4] El Chami, F., Ginoux, N., Habib, G., Nakad, R.: Rigidity results for spin manifolds with foliated boundary. J. Geom. 107(3), 533-555 (2016) · Zbl 1362.53058 · doi:10.1007/s00022-015-0286-y
[5] El Kacimi, A., Gmira, B.: Stabilité du caractère kählérien transverse. Isr. J. Math. 101, 323-347 (1997) · Zbl 0948.53041 · doi:10.1007/BF02760934
[6] El Kacimi, A.: Opérateurs transversalement elliptiques sur un feuilletage Riemannien et applications. Compos. Math. 73, 57-106 (1990) · Zbl 0697.57014
[7] Friedrich, T.: Dirac Operators in Riemannian Geometry. Graduate Studies in Mathematics, vol. 25. American Mathematical Society, Providence (2000) · Zbl 0949.58032
[8] Ginoux, N.: The Dirac Spectrum. Lecture notes in Mathematics, vol. 1976. Springer, (2009) · Zbl 1186.58020
[9] Glazebrook, J.F., Kamber, F.W.: On spectral flow of transversal Dirac operators and a theorem of Vafa-Witten. Ann. Glob. Anal. Geom. 9, 27-35 (1991) · Zbl 0733.58005 · doi:10.1007/BF02411353
[10] Glazebrook, J.F., Kamber, F.W.: Transversal Dirac families in Riemannian foliations. Commun. Math. Phys. 140, 217-240 (1991) · Zbl 0744.53014 · doi:10.1007/BF02099498
[11] Große, N., Nakad, R.: Complex generalized Killing spinors on Riemannian spin \[^c\] c manifolds. Results Math. 67(1), 177-195 (2015) · Zbl 1318.53046 · doi:10.1007/s00025-014-0401-7
[12] Habib, G.: Tenseur d’impulsion-énergie et feuilletages, Ph.D. thesis, Université Henri Poincaré-Nancy I, (2006) · Zbl 1204.53037
[13] Hijazi, O., Montiel, S.: Extrinsic Killing spinors. Math. Z. 244, 337-347 (2003) · Zbl 1035.53066 · doi:10.1007/s00209-003-0503-5
[14] Hijazi, O., Montiel, S.: A holographic principle for the existence of parallel spinors and an inequality of Shi-Tam type. Asian J. Math. 18(3), 489-506 (2014) · Zbl 1315.53050 · doi:10.4310/AJM.2014.v18.n3.a6
[15] Hijazi, O., Montiel, S., Roldan, A.: Dirac operators on hypersurfaces of manifolds with negative scalar curvature. Ann. Global Anal. Geom. 23, 247-264 (2003) · Zbl 1032.53040 · doi:10.1023/A:1022808916165
[16] Hijazi, O., Montiel, S., Urbano, F.: Spin \[^c\] c geometry of Kähler manifolds and the Hodge Laplacian on minimal Lagrangian submanifolds. Math. Z. 253(4), 821-853 (2006) · Zbl 1101.53029 · doi:10.1007/s00209-006-0936-8
[17] Hijazi, O., Montiel, S., Roldan, S.: Eigenvalue boundary problems for the Dirac operator. Commun. Math. Phys. 231, 375-390 (2002) · Zbl 1018.58020 · doi:10.1007/s00220-002-0725-0
[18] Hijazi, O., Montiel, S., Zhang, X.: Dirac operator on embedded hypersurfaces. Math. Res. Lett. 8, 195-208 (2001) · Zbl 0988.53019 · doi:10.4310/MRL.2001.v8.n2.a8
[19] Lawson, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton University Press, Princeton (1989) · Zbl 0688.57001
[20] Moroianu, A.: Parallel and Killing spinors on spin \[^c\] c manifolds. Commun. Math. Phys. 187(2), 417-427 (1997) · Zbl 0888.53035 · doi:10.1007/s002200050142
[21] Montiel, S., Romero, A.: On some real hypersurfaces of a complex hyperbolic space. Geom. Dedic. 20(2), 245-261 (1986) · Zbl 0587.53052 · doi:10.1007/BF00164402
[22] Nakad, R.: Sous-variétés spéciales des variétés spinorielles complexes, Ph.D. thesis, Université Henri Poincaré-Nancy I, (2011) · Zbl 1018.58020
[23] Niebergall, R., Ryan, P.J.: Real hypersurfaces in complex spaceforms. In: Tight and Taut Submanifolds, vol. 32, pp. 233-305. MSRI Publications. (1997) · Zbl 0904.53005
[24] Okumura, M.: On some real hypersurfaces of a complex projective space. Trans. Am. Math. Soc. 212, 355-364 (1975) · Zbl 0288.53043 · doi:10.1090/S0002-9947-1975-0377787-X
[25] O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13, 459-469 (1966) · Zbl 0145.18602 · doi:10.1307/mmj/1028999604
[26] Park, E., Richardson, K.: The basic Laplacian of a Riemannian foliation. Am. J. Math. 118, 1249-1275 (1996) · Zbl 0865.58047 · doi:10.1353/ajm.1996.0053
[27] Raulot, S.: Rigidity of compact Riemannian spin manifolds with boundary. Lett. Math. Phys. 86, 177-192 (2008) · Zbl 1204.53037 · doi:10.1007/s11005-008-0277-0
[28] Reinhart, B.: Foliated manifolds with bundle-like metrics. Ann. Math. 69, 119-132 (1959) · Zbl 0122.16604 · doi:10.2307/1970097
[29] Ryan, P.J.: Homogeneity and some curvature conditions for hypersurfaces. Tôhoku Math. J. 21(2), 363-388 (1969) · Zbl 0185.49904 · doi:10.2748/tmj/1178242949
[30] Tondeur, P.: Foliations on Riemannian Manifolds, Universitext, vol. 140. Springer, Berlin (1988) · Zbl 0643.53024 · doi:10.1007/978-1-4613-8780-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.