×

Validation of LES-C turbulence models. (English) Zbl 1536.76051

Summary: A new family of turbulence models, Large Eddy Simulation with Correction (LES-C) has been proposed in [A. E. Labovsky, SIAM J. Numer. Anal. 58, No. 5, 3068–3090 (2020; Zbl 1475.65126)], that reduces the modeling error by treating an LES model as a defect solution and then correcting it on the same spatial mesh. Herein, we investigate numerically several LES-C models, that stem from popular LES approaches: Approximate Deconvolution Model (\(ADM\)), Leray-\(\alpha\), NS-\(\alpha\), and NS-\(\omega\). The resulting LES-C models \(ADC\), Leray-\(\alpha\)-C, NS-\(\alpha\)-C and NS-\(\omega\)-C are tested on the two-dimensional problems (flow past a circular object, flow past a step) and on the three-dimensional benchmark problem of turbulent channel flow. In all the numerical tests all LES-C models are shown to outperform their LES counterparts on coarse spatial meshes.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence

Citations:

Zbl 1475.65126

Software:

FreeFem++
Full Text: DOI

References:

[1] Kolmogorov, A. N., The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 299-303 (1941)
[2] Pope, S. B., Turbulent Flows (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0966.76002
[3] Garnier, E.; Adams, N.; Sagaut, P., Large Eddy Simulation for Compressible Flows, Scientific Computation (2009), Springer · Zbl 1179.76005
[4] Jones, W. P.; Launder, B. E., The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, 301-314 (1972)
[5] P.R. Spalart, S.R. Allmaras, A one equation turbulence model for aerodynamics flows, in: 30th Aerospace Science Meeting and Exhibit, 1992, RENO, USA, 1992, pp. AIAA paper 92-0439.
[6] Sawford, B. L., Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids A, 1577-1586 (1991)
[7] Heinz, S., Nonlinear Lagrangian equations for turbulent motion and buoyancy in inhomogeneous flows. Phys. Fluids, 703-716 (1997) · Zbl 1185.76758
[8] Germano, M., Differential filters of elliptic types. Phys. Fluids, 1757-1758 (1986) · Zbl 0647.76042
[9] Grinstein, F.; Fureby, C., On Monotonically Integrated Large Eddy Simulation of Turbulent Flows Based on FCT Algorithms. Flux-Corrected Transport, 79-104 (2005), Sci. Comput. Springer: Sci. Comput. Springer Berlin · Zbl 1118.76318
[10] Berselli, L.; Galdi, G. P.; Iliescu, T.; Layton, W., Mathematical analysis for the rational large eddy simulation model. Math. Models Methods Appl. Sci., 8, 1131-1152 (2002) · Zbl 1023.76012
[11] Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T., Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison. Comput. Methods Appl. Mech. Eng., 10-26 (2012) · Zbl 1253.76050
[12] Bowers, A.; Rebholz, L., Numerical study of a regularization model for incompressible flow with deconvolution-based adaptive nonlinear filtering. Comput. Methods Appl. Mech. Engrg., 1-12 (2013) · Zbl 1286.76079
[13] Fox, L., Some improvements in the use of relaxation methods for the solution of ordinary and partial differential equations. Proc. R. Soc. Lond. Ser. A, vol., 31-59 (1947) · Zbl 0034.22101
[14] Pereyra, V. L., On improving an approximate solution of a functional equation by deferred corrections. Numer. Math., 376-391 (1966) · Zbl 0173.18103
[15] Pereyra, V. L., Iterated deferred corrections for nonlinear operator equations. Numer. Math., 316-323 (1967) · Zbl 0258.65059
[16] Stetter, H. J., The defect correction principle and discretization methods. Numer. Math., 425-443 (1978) · Zbl 0362.65052
[17] Böhmer, K.; Hemker, P. W.; Stetter, H. J., The defect correction approach, 1-32 · Zbl 0551.65034
[18] Koren, B.
[19] Layton, W.; Lee, H. K.; Peterson, J., A defect-correction method for the incompressible Navier-Stokes equations. Appl. Math. Comput., 1, 1-19 (2002) · Zbl 1074.76033
[20] Ervin, V. J.; Lee, H. K., Defect correction method for viscoelastic fluid flows at high weissenberg number. Numerical Methods Partial Differential Equ., 1, 145-164 (2006) · Zbl 1080.76037
[21] Labovsky, A., A defect correction method for the time-dependent Navier-Stokes equations. Numer. Methods Partial Differential Equations, 1, 1-25 (2008) · Zbl 1394.76087
[22] Labovsky, A., A defect correction method for the evolutionary convection diffusion problem with increased time accuracy. Comput. Methods Appl. Math., 2, 154-164 (2009) · Zbl 1404.65120
[23] Gunzburger, M.; Labovsky, A., High accuracy method for turbulent flow problems. M3AS: Math. Models Methods Appl. Sci., 6 (2012) · Zbl 1437.76039
[24] Labovsky, A., A defect correction approach to turbulence modeling. Numer. Methods Partial Differential Equations, 1, 268-288 (2015) · Zbl 1308.76170
[25] Labovsky, A.; Trenchea, C.; Wilson, N., High accuracy method for magnetohydrodynamics system in Elsasser variables. Comput. Methods Appl. Math., 1, 97-110 (2015) · Zbl 1309.76225
[26] Aggul, M.; Labovsky, A., A high accuracy minimally invasive regularization technique for Navier-Stokes equations at high Reynolds number. Numer. Methods Partial Differential Equations, 3, 814-839 (2017) · Zbl 1397.76058
[27] Aggul, M.; Connors, J.; Erkmen, D.; Labovsky, A., A defect-deferred correction method for fluid-fluid interaction. SIAM J. Numer. Anal., 4, 2484-2512 (2018) · Zbl 06921233
[28] Labovsky, A., Approximate deconvolution with correction - A member of a new class of models for high Reynolds number flows. SIAM J. Numer. Anal., 5, 3068-3090 (2020) · Zbl 1475.65126
[29] Batugedara, Y.; Labovsky, A.; Schwiebert, K., Higher temporal accuracy for LES-C turbulence models. Comput. Methods Appl. Mech. Engrg. (2021) · Zbl 1506.76049
[30] Erkmen, D.; Labovsky, A., Improving regularization techniques for incompressible fluid flows via defect correction. Comput. Methods Appl. Math., 2, 341-355 (2022) · Zbl 1485.65105
[31] Aggul, M.; Labovsky, A.; Onal, E.; Schwiebert, K., Fluid-fluid interaction problems at high Reynolds numbers: Reducing the modeling error with LES-C. SIAM J. Numer. Anal., 2, 707-732 (2023) · Zbl 1520.76042
[32] Batugedara, Y.; Labovsky, A., Approximate deconvolution with correction - a high fidelity model for magnetohydrodynamic flows at high Reynolds and magnetic Reynolds numbers. Comput. Methods Appl. Math. (2023)
[33] Hecht, F.; LeHyaric, A.; Pironneau, O., Freefem++ version 2.24-21 (2008), http://www.freefem.org/ff++
[34] Arndt, Daniel; Bangerth, Wolfgang; Blais, Bruno; Clevenger, Thomas C.; Fehling, Marc; Grayver, Alexander V.; Heister, Timo; Heltai, Luca; Kronbichler, Martin; Maier, Matthias; Munch, Peter; Pelteret, Jean-Paul; Rastak, Reza; Thomas, Ignacio; Turcksin, Bruno; Wang, Zhuoran; Wells, David, The library, version 9.2. Journal of Numerical Mathematics, 3, 131-146 (2020) · Zbl 1452.65222
[35] Schäfer, M.; Turek, S., The benchmark problem flow around a cylinder, 547-566 · Zbl 0874.76070
[36] John, V., Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. Numer. Methods Fluids, 7, 777-788 (2004) · Zbl 1085.76510
[37] Batugedara, Y.; Schwiebert, K., Note on the effect of grad-div stabilization on calculating drag and lift coefficients. Appl. Math. Comput. (2022) · Zbl 1510.76080
[38] Gunzburger, M. D., Finite Element Methods for Viscous Incompressible Flows - A Guide to Theory, Practices, and Algorithms (1989), Academic Press · Zbl 0697.76031
[39] John, V.; Liakos, A., Time dependent flow across a step: The slip with friction boundary condition. Internat. J. Numer. Methods Fluids, 713-731 (2006) · Zbl 1086.76040
[40] Layton, W.; Manica, C.; Neda, M.; Rebholz, L., Numerical analysis of a high accuracy leray-deconvolution model of turbulence. N.M.P.D.E, 2, 555-582 (2008) · Zbl 1191.76061
[41] Layton, W.; Rebholz, L., Approximate deconvolution models of turbulence: Analysis, phenomenology and numerical analysis · Zbl 1241.76002
[42] Moser, D. R.; Kim, J.; Mansour, N. N., Direct numerical simulation of turbulent channel flow up to \(R e_\tau =590\). Phys. Fluids, 943-945 (1999) · Zbl 1147.76463
[43] John, V.; Roland, M., Simulations of the turbulent channel flow at \(R e_\tau = 180\) with projection-based finite element variational multiscale methods. Internat. J. Numer. Methods Fluids, 407-429 (2007) · Zbl 1127.76026
[44] Cuff, V. M.; Dunca, A. A.; Manica, C. C.; Rebholz, L. G., The reduced order NS-\( \alpha\) model for incompressible flow: Theory, numerical analysis and benchmark testing. Math. Model. Numer. Anal., 3, 641-662 (2015) · Zbl 1321.76032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.