×

Partitioned second order method for magnetohydrodynamics in Elsässer variables. (English) Zbl 1394.76149

Summary: Magnetohydrodynamics (MHD) studies the dynamics of electrically conducting fluids, involving Navier-Stokes equations coupled with Maxwell equations via Lorentz force and Ohm’s law. Monolithic methods, which solve fully coupled MHD systems, are computationally expensive. Partitioned methods, on the other hand, decouple the full system and solve subproblems in parallel, and thus reduce the computational cost.
This paper is devoted to the design and analysis of a partitioned method for the MHD system in the Elsässer variables. The stability analysis shows that for the magnetic Prandtl number of order unity, the method is unconditionally stable. We prove the error estimates and present computational tests that support the theory.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
35Q61 Maxwell equations
Full Text: DOI

References:

[1] H. Alfvén, Existence of electromagnetic-hydrodynamic waves, Nature, 150 (1942), p405.
[2] L. Barleon; V. Casal; L. Lenhart, MHD flow in liquid-metal-cooled blankets, Fusion Eng. Des., 14, 401-412 (1991)
[3] J. D. Barrow; R. Maartens; C. G. Tsagas, Cosmology with inhomogeneous magnetic fields, Phys. Rep., 449, 131-171 (2007) · doi:10.1016/j.physrep.2007.04.006
[4] D. Biskamp, Magnetohydrodynamic Turbulence, Cambridge University Press, 2003. · Zbl 1145.76300
[5] P. Bodenheimer, G. P. Laughlin, M. Różyczka and H. W. Yorke, Numerical Methods in Astrophysics, Series in Astronomy and Astrophysics, Taylor & Francis, New York, 2007. · Zbl 1119.85001
[6] J. Connors; J. Howell; W. Layton, Decoupled time stepping methods for fluid-fluid interaction, SIAM Journal on Numerical Analysis, 50, 1297-1319 (2012) · Zbl 1457.65102 · doi:10.1137/090773362
[7] P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. · Zbl 0974.76002
[8] M. Dobrowolny; A. Mangeney; P. Veltri, Fully developed anisotropic hydromagnetic turbulence in interplanetary space, Phys. Rev. Lett., 45, 144-147 (1980) · doi:10.1103/PhysRevLett.45.144
[9] E. Dormy and M. Núñez, Introduction [Special issue: Magnetohydrodynamics in astrophysics and geophysics], Geophys. Astrophys. Fluid Dyn., 101 (2007), p169.
[10] E. Dormy and Andrew M. Soward (eds.), Mathematical Aspects of Natural Dynamos, vol. 13 of Fluid Mechanics of Astrophysics and Geophysics, Grenoble Sciences. Universite Joseph Fourier, Grenoble, 2007. · Zbl 1157.78001
[11] W. M. Elsässer, The hydromagnetic equations, Phys. Rev., 79, 183-183 (1950) · Zbl 0037.28802 · doi:10.1103/PhysRev.79.183
[12] A. Fierros Palacios, The Hamilton-type Principle in Fluid Dynamics, Springer, Vienna, 2006, Fundamentals and applications to magnetohydrodynamics, thermodynamics, and astrophysics. · Zbl 1127.76002
[13] J. A. Font, General relativistic hydrodynamics and magnetohydrodynamics: Hyperbolic systems in relativistic astrophysics, in Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008, 3-17. · Zbl 1151.83006
[14] S. Galtier; S. V. Nazarenko; A. C. Newell; A. Pouquet, A weak turbulence theory for incompressible magnetohydrodynamics, Part of the Lecture Notes in Physics book series, 536, 291-330 (2000) · Zbl 0941.76045 · doi:10.1007/3-540-47038-7_12
[15] P. Goldreich; S. Sridhar, Toward a theory of interstellar turbulence. Ⅱ: Strong Alfvénic turbulence, ApJ, 438, 763-775 (1995)
[16] H. Hashizume, Numerical and experimental research to solve MHD problem in liquid blanket system, Fusion Eng. Des., 81, 1431-1438 (2006) · doi:10.1016/j.fusengdes.2005.08.086
[17] N. Haugen, A. Brandenburg and W. Dobler, Simulations of nonhelical hydromagnetic turbulence, Phys. Rev. E, 70 (2004), 016308. · Zbl 1064.85007
[18] T. Heister; M. Mohebujjaman; L. G. Rebholz, Decoupled, unconditionally stable, higher order discretizations for mhd flow simulation, Journal of Scientific Computing, 71, 21-43 (2017) · Zbl 06849348 · doi:10.1007/s10915-016-0288-4
[19] W. Hillebrandt and F. Kupka (eds.), Interdisciplinary Aspects of Turbulence, vol. 756 of Lecture Notes in Physics, Springer-Verlag, Berlin, 2009. · Zbl 1151.76003
[20] P. S. Iroshnikov, Turbulence of a conducting fluid in a strong magnetic field, Soviet Astronom. AJ, 7, 566-571 (1964)
[21] R. H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence, Phys. Fluids, 8, 1385-1387 (1965) · doi:10.1063/1.1761412
[22] W. Layton; H. Tran; C. Trenchea, Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows, Numer. Methods Partial Differential Equations, 30, 1083-1102 (2014) · Zbl 1364.76088 · doi:10.1002/num.21857
[23] T. Lin, J. Gilbert, R. Kossowsky and P. S. U. S. COLLEGE., Sea-Water Magnetohydrodynamic Propulsion for Next-Generation Undersea Vehicles, Defense Technical Information Center, 1990, URL http://books.google.com/books?id=GvhwNwAACAAJ.
[24] E. Marsch, Turbulence in the solar wind, in Reviews in Modern Astronomy (ed. G. Klare), vol. 4 of Reviews in Modern Astronomy, Springer Berlin Heidelberg, 1991,145-156.
[25] M. Meneguzzi; U. Frisch; A. Pouquet, Helical and nonhelical turbulent dynamos, Phys. Rev. Lett., 47, 1060-1064 (1981) · doi:10.1103/PhysRevLett.47.1060
[26] D. Mitchell; D. Gubser, Magnetohydrodynamic ship propulsion with superconducting magnets, J. Supercond., 1, 349-364 (1988) · doi:10.1007/BF00618593
[27] B. Punsly, Black Hole Gravitohydromagnetics, vol. 355 of Astrophysics and Space Science Library, 2nd edition, Springer-Verlag, Berlin, 2008. · Zbl 1157.83006
[28] M. Sermange; R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36, 635-664 (1983) · Zbl 0524.76099 · doi:10.1002/cpa.3160360506
[29] J. V. Shebalin; W. H. Matthaeus; D. Montgomery, Anisotropy in MHD turbulence due to a mean magnetic field, J. Plasma Phys., 29, 525-547 (1983) · doi:10.1017/S0022377800000933
[30] S. Smolentsev; R. Moreau; L. Bühler; C. Mistrangelo, MHD thermofluid issues of liquid-metal blankets: Phenomena and advances, Fusion Eng. Des., 85, 1196-1205 (2010) · doi:10.1016/j.fusengdes.2010.02.038
[31] D. Sondak and A. A. Oberai, Large eddy simulation models for incompressible magnetohydrodynamics derived from the variational multiscale formulation, Phys. Plasmas, 19 (2012), 102308.
[32] C. Trenchea, Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows, Appl. Math. Lett., 27, 97-100 (2014) · Zbl 1311.76096 · doi:10.1016/j.aml.2013.06.017
[33] M. K. Verma, Statistical theory of magnetohydrodynamic turbulence: Recent results, Phys. Rep., 401, 229-380 (2004) · doi:10.1016/j.physrep.2004.07.007
[34] I. Veselovsky, Turbulence and waves in the solar wind formation region and the heliosphere, Astrophys. Space Sci., 277, 219-224 (2001) · Zbl 1043.76562 · doi:10.1007/978-94-010-0904-1_28
[35] N. Wilson; A. Labovsky; C. Trenchea, High accuracy method for magnetohydrodynamics system in Elsässer variables, Comput. Methods Appl. Math., 15, 97-110 (2015) · Zbl 1309.76225 · doi:10.1515/cmam-2014-0023
[36] G. Yuksel; R. Ingram, Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers, Int. J. Numer. Anal. Model., 10, 74-98 (2013) · Zbl 1266.76066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.