×

On \(n\)-absorbing ideals and \((m, n)\)-closed ideals in trivial ring extensions of commutative rings. (English) Zbl 1448.13006

For a commutative ring \(A\) and an \(A\)-module \(M\), the author study the behaviour of \(n\)-absorving, and strongly \(n\)-absorving ideals in the trivial extensions \(A(+)M\). In particular, for any ideal \(I\subseteq{A}\) and any submodule \(N\subseteq{M}\) such that \(IM\subseteq{N}\) they obtain that \(I\subseteq{A}\) is \(n\)-absorving iff \(I(+)N\subseteq{A(+){M}}\) is \(n\) absorving. After that, they study the case of an integral domain \(A\) with field of fractions \(K\), a \(K\)-module \(M\), and the trivial ring extension \(A(+)M\), and show that the conjecture one (resp. three) in [D. F. Anderson and A. Badawi, Commun. Algebra 39, No. 5, 1646–1672 (2011; Zbl 1232.13001)] holds in \(A(+)M\) iff it holds in \(A\) (Theorems 3.4 and 4.2 respectively). Particular cases of integral domains, as Prüfer, noetherian and \(u\)-rings are considered.
The second part of the paper deals with \((m,n)\)-ideals in trivial ring extensions.

MSC:

13A15 Ideals and multiplicative ideal theory in commutative rings
13F05 Dedekind, Prüfer, Krull and Mori rings and their generalizations
13G05 Integral domains

Citations:

Zbl 1232.13001
Full Text: DOI

References:

[1] Anderson, D. D. and Winderes, M., Idealisation of a module, J. Comm. Algebra1 (2009) 3-56. · Zbl 1194.13002
[2] Anderson, D. F. and Badawi, A., On \(n\)-absorbing ideals of commutative rings, Comm. Algebra39 (2011) 1646-1672. · Zbl 1232.13001
[3] Anderson, D. F. and Badawi, A., On \((m, n)\)-closed ideals of commutative rings, J. Algebra Appl.16(1) (2017) 1750013, 21 pp. · Zbl 1355.13004
[4] Badawi, A., On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc.75 (2007) 417-429. · Zbl 1120.13004
[5] Badawi, A., Tekir, U. and Yeikin, E., Generalizations of 2-absorbing primary ideals of commutative rings, Turk. J. Math.40 (2016) 703-717. · Zbl 1424.13004
[6] Badawi, A., Tekir, U. and Yeikin, E., On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc.52 (2015) 97-111. · Zbl 1315.13008
[7] Badawi, A., Tekir, U. and Yeikin, E., On 2-absorbing primary ideals of commutative rings, Bull. Korean Math. Soc.51 (2014) 1163-1173. · Zbl 1308.13001
[8] A. E. Becker, Results on \(n\)-absorbing ideals of commutative rings, M. S. thesis, University of Wisconsin-Milwaukee, Milwaukee, U. S. A. (2015).
[9] Bakkari, C., Kabbaj, S. and Mahdou, N., Trivial extension definided by Prüfer conditions, J. Pure Appl. Algebra214 (2010) 53-60. · Zbl 1175.13008
[10] Cahen, P. J., Fontana, M., Frisch, S. and Glaz, S., Open problems in commutative ring theory, Commutative Algebra (Springer, 2014), pp. 353-375. · Zbl 1327.13002
[11] Callialp, F., Yetkin, E. and Tekir, U., On 2-absorbing primary and weakly 2-absorbing elements in multiplicative lattices, Italian J. Pure Appl. Math.34 (2015) 263-276. · Zbl 1333.06058
[12] Celikel, E. Y., Ugurlu, E. A. and Ulucak, G., On \(\phi -2\)-absorbing elements in multiplicative lattices, Palest. J. Math.5 (2016) 127-135. · Zbl 1359.06010
[13] Celikel, E. Y., Ugurlu, E. A. and Ulucak, G., On \(\phi -2\)-absorbing primary elements in multiplicative lattices, Palest. J. Math.5 (2016) 136-146. · Zbl 1359.06011
[14] Chaudhari, J. N., 2-absorbing ideals in semirings, Int. J. Algebra6 (2012) 265-270. · Zbl 1251.16032
[15] H. S. Seung Choi and A. Walker, The radical of an \(n\)-absorbing ideal (2016), arXiv:1610.10077 [math.AC]. · Zbl 1440.13009
[16] Darani, A. Yousefian and Puczylowski, E. R., On 2-absorbing commutative semigroups and their applications to rings, Semigroup Forum86 (2013) 83-91. · Zbl 1270.20064
[17] Darani, A. Yousefian, On 2-absorbing and weakly 2-absorbing ideals of commutative semirings, Kyungpook Math. J.52 (2012) 91-97. · Zbl 1290.16050
[18] Darani, A. Yousefian and Mostafanasab, H., Generalizations of semicoprime preradicals, Algebra Discrete Math.21 (2016) 214-238. · Zbl 1358.16028
[19] Darani, A. Yousefian and Mostafanasab, H., On 2-absorbing preradicals, J. Algebra Appl.14 (2015) 22 pages. · Zbl 1316.16015
[20] Darani, A. Yousefian and Mostafanasab, H., Co-2-absorbing preradicals and submodules, J. Algebra Appl.14 (2015) 23 pages. · Zbl 1326.16015
[21] Donadze, G., The Anderson-Badawi conjecture for commutative algebras over infinite fields, Indian J. Pure Appl. Math.47 (2016) 691-696. · Zbl 1368.13002
[22] Hamoda, M. and Ashour, A. E., On graded \(n\)-absorbing submodules, Le Matematiche70 (2015) 243-254. · Zbl 1338.13004
[23] Huckaba, J. A., Commutative Rings with Zero Divisors (Marcel Dekker, New York Basel, 1988). · Zbl 0637.13001
[24] Jayaram, C., Tekir, U. and Yetkin, E., 2-absorbing and weakly 2-absorbing elements in multiplicative lattices, Comm. Algebra42 (2014) 2338-2353. · Zbl 1302.06027
[25] Kumar, P., Dubey, M. K. and Sarohe, P., On 2-absorbing primary ideals in commutative semirings, Euro. J. Pure Appl. Math.9 (2016) 186-195. · Zbl 1367.16040
[26] Kumar, P., Dubey, M. K. and Sarohe, P., Some results on 2-absorbing ideals in commutative semirings, J. Math. Appl.38 (2015) 5-13. · Zbl 1382.16046
[27] Laradji, A., On \(n\)-absorbing rings and ideals, Colloquium Mathematicum147 (2017) 265-273. · Zbl 1370.13002
[28] Malek, A., Hamed, A. and Benhissi, A., 2-absorbing ideals in formal power series rings, Palest. J. Math.6(2) (2017) 502-506. · Zbl 1371.13003
[29] Nasehpour, P., On the Anderson-Badawi \(w_{R [X]}(I [X]) = w_R(I)\) conjecture, Arch. Math. Brno52 (2016) 71-78. · Zbl 1374.13007
[30] Quartararo, P., J. R. and Butts, H. S., Finite unions of ideals and modules, Proc. Am. Math. Soc.52 (1975) 91-96. · Zbl 0315.13001
[31] S. Smach and S. Hizem, On Anderson-Badawi conjectures, Beitr. Algebra Geom., doi: 10.1007/s13366-017-0343-9 (to appear). · Zbl 1390.13011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.