×

BDF integrators for constrained mechanical systems on Lie groups. (English) Zbl 1459.37075

Summary: Multistep methods of BDF type are the method-of-choice in several industrial multibody system simulation packages. In the present paper, BDF is applied to constrained systems in nonlinear configuration spaces with Lie group structure that allows, e.g., a representation of multibody systems with large rotations without singularities. The \(k\)-step Lie group integrator BLieDF avoids order reduction by a slightly perturbed argument of the exponential map for representing the nonlinearity of the numerical flow in the configuration space without any time-consuming re-parametrization.
This integrator is compared with multistep methods on Lie groups suggested by S. Faltinsen et al. [Appl. Numer. Math. 39, No. 3–4, 349–365 (2001; Zbl 0996.65073)] and the advantages of the novel BLieDF integrator are shown.

MSC:

37M15 Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
65L05 Numerical methods for initial value problems involving ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations

Citations:

Zbl 0996.65073

Software:

RODAS
Full Text: DOI

References:

[1] Arnold, Martin; Burgermeister, Bernhard; Führer, Claus; Hippmann, Gerhard; Rill, Georg, Numerical methods in vehicle system dynamics: State of the art and current developments, Veh. Syst. Dynam., 49, 1159-1207 (2011)
[2] Curtiss, Charles Francis; Hirschfelder, Joseph Oakland, Integration of stiff equations, Proc. Natl. Acad. Sci. USA, 38, 235-243 (1952) · Zbl 0046.13602
[3] Gear, Charles William, Numerical Initial Value Problems in Ordinary Differential Equations (1971), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 1145.65316
[4] Crouch, Peter E.; Grossmann, Robert, Numerical integration of ordinary differential equations on manifolds, J. Nonlinear Sci., 3, 1-33 (1992) · Zbl 0798.34012
[5] Munthe-Kaas, Hans, Runge-Kutta methods on Lie groups, BIT, 38, 92-111 (1998) · Zbl 0904.65077
[6] Munthe-Kaas, Hans, High order Runge-Kutta methods on manifolds, Appl. Numer. Math., 29, 115-127 (1999) · Zbl 0934.65077
[7] Celledoni, Elena; Marthinsen, Arne; Owren, Brynjulf, Commutator-free Lie group methods, Future Gener. Comput. Syst., 19, 341-352 (2003)
[8] Brüls, Olivier; Cardona, Alberto, On the use of Lie group time integrators in multibody dynamics, J. Comput. Nonlinear Dynam., 5, Article 031002 pp. (2010)
[9] Faltinsen, Stig; Marthinsen, Arne; Munthe-Kaas, Hans, Multistep methods integrating ordinary differential equations on manifolds, Appl. Numer. Math., 39, 349-365 (2001) · Zbl 0996.65073
[10] Hairer, Ernst; Nørsett, Syvert; Wanner, Gerhard, Solving Ordinary Differential Equations. I. Nonstiff Problems (1993), Springer-Verlag: Springer-Verlag Berlin Heidelberg New York · Zbl 0789.65048
[11] Hairer, Ernst; Lubich, Christian; Wanner, Gerhard, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2006), Springer-Verlag: Springer-Verlag Berlin Heidelberg New York · Zbl 1094.65125
[12] Varadarajan, Veeravallis S., Lie Groups, Lie Algebras, and their Representations (1992), Springer Verlag: Springer Verlag New York, Berlin, Heidelberg, Tokyo
[13] Arnold, Martin; Cardona, Alberto; Brüls, Olivier, A Lie algebra approach to Lie group time integration of constrained systems, (Betsch, P., Structure-Preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics (2016), Springer International Publishing: Springer International Publishing Cham), 91-158
[14] Magnus, Wilhelm, On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math., 7, 649-673 (1954) · Zbl 0056.34102
[15] Müller, Andreas, Approximation of finite rigid body motions from velocity fields, ZAMM - J. Appl. Math. Mech. / Z. Angew. Math. Mech., 90, 514-521 (2010) · Zbl 1241.70013
[16] Brüls, Olivier; Cardona, Alberto; Arnold, Martin, Lie group generalized-\( \alpha\) time integration of constrained flexible multibody systems, Mech. Mach. Theory, 48, 121-137 (2012)
[17] Munthe-Kaas, Hans; Owren, Brynjulf, Computations in a free Lie algebra, Philos. Trans. R. Soc. Lond., 357 (1999) · Zbl 0956.65056
[18] Victoria Wieloch, Martin Arnold, Stability bounds for step size ratios in variable time step implementations of Newmark integrators, in: Proceedings of ECCOMAS Thematic Conference on Multibody Dynamics, Prague, 2017.
[19] Wensch, Jörg, Extrapolation methods in Lie groups, Numer. Math., 89, 591-604 (2001) · Zbl 1009.65050
[20] Arnold, Martin; Brüls, Olivier; Cardona, Alberto, Error analysis of generalized-\( \alpha\) Lie group time integration methods for constrained mechanical systems, Numer. Math., 129, 149-179 (2015) · Zbl 1309.70016
[21] Hairer, Ernst; Wanner, Gerhard, Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems (1996), Springer-Verlag: Springer-Verlag Berlin Heidelberg New York · Zbl 0859.65067
[22] Victoria Wieloch, Martin Arnold, BLieDF2nd - a \(k\)-step BDF integrator for constrained mechanical systems on Lie groups, in: Proceedings of the 5th Joint International Conference on Multibody System Dynamics, Lisbon, 2018.
[23] Lötstedt, Per; Petzold, Linda, Numerical solution of nonlinear differential equations with algebraic constraints i: Convergence results for backward differentiation formulas, Math. Comp., 46, 174, 491-516 (1986) · Zbl 0601.65060
[24] Victoria Wieloch, Martin Arnold, Convergence analysis of BLieDF integrators for constrained mechanical systems. Technical report, 2019 (in preparation).
[25] Olivier Brüls, Martin Arnold, Alberto Cardona, Two Lie group formulations for dynamic multibody systems with large rotations, in: Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 2011. · Zbl 1309.70016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.