×

Rank of a co-doubly commuting submodule is \(2\). (English) Zbl 1464.47005

Let \(T=(T_{1},\dots,T_{n})\) be an \(n\)-tuple of commuting operators on a Hilbert space \(\mathcal H\). For a subset \(E\subset \mathcal H\) denote by \([E]_{T}\) the closed span of the set of vectors \(T_{1}^{k_{1}}\cdots T_{n}^{k_{n}}x\), \(k_{i}\geq 0\), \(i=1,\dots, n\), \(x\in E\). The rank of \(T\) is defined by the formula \( \operatorname{rank}(T)=\min\{ \#E: E\subset {\mathcal H},\, [E]_{T}={\mathcal H} \} \). Let \( {\mathbb D}^{n} = \{ z=(z_{1},\dots z_{n})\in {\mathbb C}^{n}:|z_{i}|=1,\,i=1,\dots, n \} \) be the unit polydisk. Denote by \(M_{z_{i}}\) the operator of multiplication by the coordinate function \(z_{i}\) on the Hardy space \(H^{2}({\mathbb D}^{n})\). A subspace \(S\subset H^{2}({\mathbb D}^{n})\) is said to be invariant if \(M_{z_{i}}S\subset S\) for all \(i=1,\dots, n\). The rank of such a space is defined by \( \operatorname{rank} S = \operatorname{rank}(M_{z_{1}}|_{S},\dots,M_{z_{n}}|_{S}) \). The main result of the paper reads as follows. Theorem. Let \(\varphi, \psi\in H^{\infty}({\mathbb D})\) be the inner functions \(Q_{\varphi} = H^{2}({\mathbb D})\ominus \varphi H^{2}({\mathbb D})\), \(Q_{\psi} = H^{2}({\mathbb D})\ominus \psi H^{2}({\mathbb D})\). Then \(\operatorname{rank}(Q_{\varphi}\otimes Q_{\psi})^{\perp}=2\). This result permits to give a positive answer to the question posed in [R. G. Douglas and R.-W. Yang, Integral Equations Oper. Theory 38, No. 2, 207–221 (2000; Zbl 0970.47016)].

MSC:

47A13 Several-variable operator theory (spectral, Fredholm, etc.)
47A15 Invariant subspaces of linear operators
47A16 Cyclic vectors, hypercyclic and chaotic operators

Citations:

Zbl 0970.47016

References:

[1] Chattopadhyay, Arup; Das, B. Krishna; Sarkar, Jaydeb, Tensor product of quotient Hilbert modules, J. Math. Anal. Appl., 424, 1, 727-747 (2015) · Zbl 1302.47034 · doi:10.1016/j.jmaa.2014.11.038
[2] Chattopadhyay, Arup; Das, B. Krishna; Sarkar, Jaydeb, Star-generating vectors of Rudin’s quotient modules, J. Funct. Anal., 267, 11, 4341-4360 (2014) · Zbl 1331.47009 · doi:10.1016/j.jfa.2014.09.024
[3] Douglas, Ronald G.; Paulsen, Vern I., Hilbert modules over function algebras, Pitman Research Notes in Mathematics Series 217, vi+130 pp. (1989), Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York · Zbl 0686.46035
[4] Douglas, Ronald G.; Yang, Rongwei, Operator theory in the Hardy space over the bidisk. I, Integral Equations Operator Theory, 38, 2, 207-221 (2000) · Zbl 0970.47016 · doi:10.1007/BF01200124
[5] Garcia, Stephan Ramon, Conjugation and Clark operators. Recent advances in operator-related function theory, Contemp. Math. 393, 67-111 (2006), Amer. Math. Soc., Providence, RI · Zbl 1099.30020 · doi:10.1090/conm/393/07372
[6] Izuchi, Kei Ji; Izuchi, Kou Hei; Izuchi, Yuko, Blaschke products and the rank of backward shift invariant subspaces over the bidisk, J. Funct. Anal., 261, 6, 1457-1468 (2011) · Zbl 1228.32006 · doi:10.1016/j.jfa.2011.05.009
[7] Izuchi, Kei Ji; Izuchi, Kou Hei; Izuchi, Yuko, Ranks of invariant subspaces of the Hardy space over the bidisk, J. Reine Angew. Math., 659, 101-139 (2011) · Zbl 1234.47002 · doi:10.1515/CRELLE.2011.069
[8] Izuchi, Kei Ji; Izuchi, Kou Hei; Izuchi, Yuko, Ranks of backward shift invariant subspaces of the Hardy space over the bidisk, Math. Z., 274, 3-4, 885-903 (2013) · Zbl 1281.47004 · doi:10.1007/s00209-012-1100-2
[9] Izuchi, Keiji; Nakazi, Takahiko; Seto, Michio, Backward shift invariant subspaces in the bidisc. II, J. Operator Theory, 51, 2, 361-376 (2004) · Zbl 1055.47009
[10] Rudin, Walter, Function theory in polydiscs, vii+188 pp. (1969), W. A. Benjamin, Inc., New York-Amsterdam · Zbl 0177.34101
[11] Sarkar, Jaydeb, Jordan blocks of \(H^2(\mathbb{D}^n)\), J. Operator Theory, 72, 2, 371-385 (2014) · Zbl 1389.47022 · doi:10.7900/jot.2013mar16.1980
[12] Seto, Michio, Infinite sequences of inner functions and submodules in \(H^2(\mathbb{D}^2)\), J. Operator Theory, 61, 1, 75-86 (2009) · Zbl 1199.47158
[13] Seto, Michio; Yang, Rongwei, Inner sequence based invariant subspaces in \(H^2(D^2)\), Proc. Amer. Math. Soc., 135, 8, 2519-2526 (2007) · Zbl 1137.47006 · doi:10.1090/S0002-9939-07-08745-X
[14] Yang, Rongwei, Operator theory in the Hardy space over the bidisk. III, J. Funct. Anal., 186, 2, 521-545 (2001) · Zbl 1049.47501 · doi:10.1006/jfan.2001.3799
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.