×

Nonlinear (super)symmetries and amplitudes. (English) Zbl 1377.81141

Summary: There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic \(E_{7(7)}\) scalar sector symmetries as well as the fermionic goldstino symmetries.
We present a universal derivation of the vanishing amplitudes in the single (bosonic or fermionic) soft limit. We explain why, universally, the double-soft limit probes the coset space algebra. We also provide identities describing the multiple-soft limit. We discuss loop corrections to \(\mathcal{N} \geq 5 \) supergravity, to the D3 brane, and the UV completion of constrained multiplets in string theory.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83F05 Relativistic cosmology
81T60 Supersymmetric field theories in quantum mechanics

References:

[1] E. Noether, Invariant Variation Problems, Gott. Nachr.1918 (1918) 235 [physics/0503066] [INSPIRE]. · JFM 46.0770.01
[2] P.K. Townsend, Noether theorems and higher derivatives, arXiv:1605.07128 [INSPIRE]. · JFM 16.0920.01
[3] S.G. Avery and B.U.W. Schwab, Noether’s second theorem and Ward identities for gauge symmetries, JHEP02 (2016) 031 [arXiv:1510.07038] [INSPIRE]. · Zbl 1388.83004 · doi:10.1007/JHEP02(2016)031
[4] M.K. Gaillard and B. Zumino, Duality Rotations for Interacting Fields, Nucl. Phys.B 193 (1981) 221 [INSPIRE]. · doi:10.1016/0550-3213(81)90527-7
[5] J.C. Ward, An Identity in Quantum Electrodynamics, Phys. Rev.78 (1950) 182 [INSPIRE]. · Zbl 0041.33012 · doi:10.1103/PhysRev.78.182
[6] Y. Takahashi, On the generalized Ward identity, Nuovo Cim.6 (1957) 371 [INSPIRE]. · Zbl 0078.20202 · doi:10.1007/BF02832514
[7] H. Elvang and Y.-t. Huang, Scattering Amplitudes in Gauge Theory and Gravity, Cambridge University Press (2015). · Zbl 1332.81010
[8] D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett.16 (1972) 438 [INSPIRE]. · Zbl 0983.81112
[9] D.V. Volkov and V.P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett.B 46 (1973) 109 [INSPIRE]. · doi:10.1016/0370-2693(73)90490-5
[10] I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett.B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE]. · Zbl 1370.83099 · doi:10.1016/j.physletb.2014.04.015
[11] S. Ferrara, R. Kallosh and A. Linde, Cosmology with Nilpotent Superfields, JHEP10 (2014) 143 [arXiv:1408.4096] [INSPIRE]. · Zbl 1333.83268 · doi:10.1007/JHEP10(2014)143
[12] S. Ferrara, R. Kallosh and J. Thaler, Cosmology with orthogonal nilpotent superfields, Phys. Rev.D 93 (2016) 043516 [arXiv:1512.00545] [INSPIRE].
[13] J.J.M. Carrasco, R. Kallosh and A. Linde, α-Attractors: Planck, LHC and Dark Energy, JHEP10 (2015) 147 [arXiv:1506.01708] [INSPIRE]. · Zbl 1387.83099
[14] E.A. Bergshoeff, D.Z. Freedman, R. Kallosh and A. Van Proeyen, Pure de Sitter Supergravity, Phys. Rev.D 92 (2015) 085040 [arXiv:1507.08264] [INSPIRE].
[15] F. Hasegawa and Y. Yamada, Component action of nilpotent multiplet coupled to matter in 4 dimensionalN \[\mathcal{N} = 1\] supergravity, JHEP10 (2015) 106 [arXiv:1507.08619] [INSPIRE]. · Zbl 1388.83818 · doi:10.1007/JHEP10(2015)106
[16] S.M. Kuzenko, Complex linear Goldstino superfield and supergravity, JHEP10 (2015) 006 [arXiv:1508.03190] [INSPIRE]. · Zbl 1388.83848 · doi:10.1007/JHEP10(2015)006
[17] I. Bandos, L. Martucci, D. Sorokin and M. Tonin, Brane induced supersymmetry breaking and de Sitter supergravity, JHEP02 (2016) 080 [arXiv:1511.03024] [INSPIRE]. · Zbl 1388.83729 · doi:10.1007/JHEP02(2016)080
[18] E. Bergshoeff, F. Coomans, R. Kallosh, C.S. Shahbazi and A. Van Proeyen, Dirac-Born-Infeld-Volkov-Akulov and Deformation of Supersymmetry, JHEP08 (2013) 100 [arXiv:1303.5662] [INSPIRE]. · Zbl 1342.81549 · doi:10.1007/JHEP08(2013)100
[19] B. Vercnocke and T. Wrase, Constrained superfields from an anti-D3-brane in KKLT, JHEP08 (2016) 132 [arXiv:1605.03961] [INSPIRE]. · Zbl 1390.81473 · doi:10.1007/JHEP08(2016)132
[20] R. Kallosh, B. Vercnocke and T. Wrase, String Theory Origin of Constrained Multiplets, JHEP09 (2016) 063 [arXiv:1606.09245] [INSPIRE]. · Zbl 1390.83347 · doi:10.1007/JHEP09(2016)063
[21] W.-M. Chen, Y.-t. Huang and C. Wen, New Fermionic Soft Theorems for Supergravity Amplitudes, Phys. Rev. Lett.115 (2015) 021603 [arXiv:1412.1809] [INSPIRE]. · doi:10.1103/PhysRevLett.115.021603
[22] S. He, Z. Liu and J.-B. Wu, Scattering Equations, Twistor-string Formulas and Double-soft Limits in Four Dimensions, JHEP07 (2016) 060 [arXiv:1604.02834] [INSPIRE]. · Zbl 1390.81629 · doi:10.1007/JHEP07(2016)060
[23] F. Cachazo, P. Cha and S. Mizera, Extensions of Theories from Soft Limits, JHEP06 (2016) 170 [arXiv:1604.03893] [INSPIRE]. · Zbl 1388.81203 · doi:10.1007/JHEP06(2016)170
[24] J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Abelian Z-theory: NLSM amplitudes and α′-corrections from the open string, arXiv:1608.02569 [INSPIRE]. · Zbl 1380.83251
[25] A. Volovich, C. Wen and M. Zlotnikov, Double Soft Theorems in Gauge and String Theories, JHEP07 (2015) 095 [arXiv:1504.05559] [INSPIRE]. · Zbl 1388.81368 · doi:10.1007/JHEP07(2015)095
[26] H. Lüo and C. Wen, Recursion relations from soft theorems, JHEP03 (2016) 088 [arXiv:1512.06801] [INSPIRE]. · doi:10.1007/JHEP03(2016)088
[27] M. Bianchi, A.L. Guerrieri, Y.-t. Huang, C.-J. Lee and C. Wen, Exploring soft constraints on effective actions, JHEP10 (2016) 036 [arXiv:1605.08697] [INSPIRE]. · Zbl 1390.81248 · doi:10.1007/JHEP10(2016)036
[28] R. Kallosh and M. Soroush, Explicit Action of E7(7)on N = 8 Supergravity Fields, Nucl. Phys.B 801 (2008) 25 [arXiv:0802.4106] [INSPIRE]. · Zbl 1189.83089 · doi:10.1016/j.nuclphysb.2008.04.006
[29] F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys.B 306 (1988) 759 [INSPIRE]. · doi:10.1016/0550-3213(88)90442-7
[30] B.S. DeWitt, Quantum Theory of Gravity. 2. The Manifestly Covariant Theory, Phys. Rev.162 (1967) 1195 [INSPIRE]. · Zbl 0161.46501
[31] J. Honerkamp, Chiral multiloops, Nucl. Phys.B 36 (1972) 130 [INSPIRE]. · doi:10.1016/0550-3213(72)90299-4
[32] G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst. H. Poincare Phys. Theor.A20 (1974) 69 [INSPIRE]. · Zbl 1422.83019
[33] R.E. Kallosh, The Renormalization in Nonabelian Gauge Theories, Nucl. Phys.B 78 (1974) 293 [INSPIRE]. · doi:10.1016/0550-3213(74)90284-3
[34] M.T. Grisaru, P. van Nieuwenhuizen and C.C. Wu, Background Field Method Versus Normal Field Theory in Explicit Examples: One Loop Divergences in S Matrix and Green’s Functions for Yang-Mills and Gravitational Fields, Phys. Rev.D 12 (1975) 3203 [INSPIRE].
[35] M.H. Goroff and A. Sagnotti, The Ultraviolet Behavior of Einstein Gravity, Nucl. Phys.B 266 (1986) 709 [INSPIRE]. · doi:10.1016/0550-3213(86)90193-8
[36] A.E.M. van de Ven, Two loop quantum gravity, Nucl. Phys.B 378 (1992) 309 [INSPIRE].
[37] Z. Bern, C. Cheung, H.-H. Chi, S. Davies, L. Dixon and J. Nohle, Evanescent Effects Can Alter Ultraviolet Divergences in Quantum Gravity without Physical Consequences, Phys. Rev. Lett.115 (2015) 211301 [arXiv:1507.06118] [INSPIRE]. · doi:10.1103/PhysRevLett.115.211301
[38] R.E. Kallosh, Counterterms in extended supergravities, Phys. Lett.B 99 (1981) 122 [INSPIRE]. · doi:10.1016/0370-2693(81)90964-3
[39] P.S. Howe and U. Lindström, Higher Order Invariants in Extended Supergravity, Nucl. Phys.B 181 (1981) 487 [INSPIRE]. · doi:10.1016/0550-3213(81)90537-X
[40] W. Chemissany, S. Ferrara, R. Kallosh and C.S. Shahbazi, N = 2 Supergravity Counterterms, Off and On Shell, JHEP12 (2012) 089 [arXiv:1208.4801] [INSPIRE]. · Zbl 1397.83185 · doi:10.1007/JHEP12(2012)089
[41] N. Beisert, H. Elvang, D.Z. Freedman, M. Kiermaier, A. Morales and S. Stieberger, E7(7)constraints on counterterms in N = 8 supergravity, Phys. Lett.B 694 (2011) 265 [arXiv:1009.1643] [INSPIRE].
[42] R. Kallosh, E7(7)Symmetry and Finiteness of N = 8 Supergravity, JHEP03 (2012) 083 [arXiv:1103.4115] [INSPIRE]. · Zbl 1309.81250 · doi:10.1007/JHEP03(2012)083
[43] R. Kallosh, N = 8 Counterterms and E7(7)Current Conservation, JHEP06 (2011) 073 [arXiv:1104.5480] [INSPIRE]. · Zbl 1298.81351 · doi:10.1007/JHEP06(2011)073
[44] G. Bossard and H. Nicolai, Counterterms vs. Dualities, JHEP08 (2011) 074 [arXiv:1105.1273] [INSPIRE]. · Zbl 1298.81249
[45] R. Kallosh and T. Ortín, New E77 invariants and amplitudes, JHEP09 (2012) 137 [arXiv:1205.4437] [INSPIRE]. · Zbl 1397.83040 · doi:10.1007/JHEP09(2012)137
[46] M. Günaydin and R. Kallosh, Obstruction to E7(7)Deformation in N = 8 Supergravity, arXiv:1303.3540 [INSPIRE].
[47] S.M. Kuzenko and S.J. Tyler, On the Goldstino actions and their symmetries, JHEP05 (2011) 055 [arXiv:1102.3043] [INSPIRE]. · Zbl 1296.81049 · doi:10.1007/JHEP05(2011)055
[48] N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP09 (2010) 016 [arXiv:0808.1446] [INSPIRE]. · Zbl 1291.81356 · doi:10.1007/JHEP09(2010)016
[49] J. Broedel and L.J. Dixon, R4counterterm and E7(7)symmetry in maximal supergravity, JHEP05 (2010) 003 [arXiv:0911.5704] [INSPIRE]. · Zbl 1288.81131 · doi:10.1007/JHEP05(2010)003
[50] R. Kallosh and T. Kugo, The footprint of E7(7)amplitudes of N = 8 supergravity, JHEP01 (2009) 072 [arXiv:0811.3414] [INSPIRE]. · Zbl 1243.81204 · doi:10.1088/1126-6708/2009/01/072
[51] S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev.137 (1965) B1022 [INSPIRE]. · doi:10.1103/PhysRev.137.B1022
[52] S. Weinberg, Pion scattering lengths, Phys. Rev. Lett.17 (1966) 616 [INSPIRE]. · doi:10.1103/PhysRevLett.17.616
[53] V.P. Akulov and D.V. Volkov, Goldstone fields with spin 1/2, Theor. Math. Phys.18 (1974) 28 [INSPIRE]. · doi:10.1007/BF01036922
[54] B. de Wit and D.Z. Freedman, Phenomenology of Goldstone Neutrinos, Phys. Rev. Lett.35 (1975) 827 [INSPIRE]. · doi:10.1103/PhysRevLett.35.827
[55] F. Cachazo, S. He and E.Y. Yuan, New Double Soft Emission Theorems, Phys. Rev.D 92 (2015) 065030 [arXiv:1503.04816] [INSPIRE].
[56] J.J.M. Carrasco, R. Kallosh and R. Roiban, Covariant procedures for perturbative non-linear deformation of duality-invariant theories, Phys. Rev.D 85 (2012) 025007 [arXiv:1108.4390] [INSPIRE].
[57] W. Chemissany, R. Kallosh and T. Ortín, Born-Infeld with Higher Derivatives, Phys. Rev.D 85 (2012) 046002 [arXiv:1112.0332] [INSPIRE].
[58] W.A. Chemissany, J. de Jong and M. de Roo, Selfduality of non-linear electrodynamics with derivative corrections, JHEP11 (2006) 086 [hep-th/0610060] [INSPIRE]. · doi:10.1088/1126-6708/2006/11/086
[59] M. de Roo and M.G.C. Eenink, The Effective action for the four point functions in Abelian open superstring theory, JHEP08 (2003) 036 [hep-th/0307211] [INSPIRE]. · doi:10.1088/1126-6708/2003/08/036
[60] S. Ferrara and R. Kallosh, Creation of Matter in the Universe and Groups of Type E7, JHEP12 (2011) 096 [arXiv:1110.4048] [INSPIRE]. · Zbl 1306.81408 · doi:10.1007/JHEP12(2011)096
[61] Z. Bern, S. Davies, T. Dennen, A.V. Smirnov and V.A. Smirnov, Ultraviolet Properties of N = 4 Supergravity at Four Loops, Phys. Rev. Lett.111 (2013) 231302 [arXiv:1309.2498] [INSPIRE].
[62] J.J.M. Carrasco, R. Kallosh, R. Roiban and A.A. Tseytlin, On the U(1) duality anomaly and the S-matrix of N = 4 supergravity, JHEP07 (2013) 029 [arXiv:1303.6219] [INSPIRE]. · Zbl 1342.83454 · doi:10.1007/JHEP07(2013)029
[63] Z. Bern, S. Davies and T. Dennen, Enhanced ultraviolet cancellations inN \[\mathcal{N} = 5\] supergravity at four loops, Phys. Rev.D 90 (2014) 105011 [arXiv:1409.3089] [INSPIRE].
[64] S. Ferrara, A. Gnecchi and A. Marrani, D = 4 Attractors, Effective Horizon Radius and Fake Supergravity, Phys. Rev.D 78 (2008) 065003 [arXiv:0806.3196] [INSPIRE].
[65] K.A. Meissner and H. Nicolai, Conformal Anomalies and Gravitational Waves, arXiv:1607.07312 [INSPIRE]. · Zbl 1379.83009
[66] R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear Realization of Supersymmetry Algebra From Supersymmetric Constraint, Phys. Lett.B 220 (1989) 569 [INSPIRE]. · doi:10.1016/0370-2693(89)90788-0
[67] A. Brignole, F. Feruglio and F. Zwirner, On the effective interactions of a light gravitino with matter fermions, JHEP11 (1997) 001 [hep-th/9709111] [INSPIRE]. · Zbl 0949.81512 · doi:10.1088/1126-6708/1997/11/001
[68] S. Cecotti and S. Ferrara, Supersymmetric Born-Infeld Lagrangians, Phys. Lett.B 187 (1987) 335 [INSPIRE]. · doi:10.1016/0370-2693(87)91105-1
[69] J. Bagger and A. Galperin, A New Goldstone multiplet for partially broken supersymmetry, Phys. Rev.D 55 (1997) 1091 [hep-th/9608177] [INSPIRE].
[70] Z. Komargodski and N. Seiberg, From Linear SUSY to Constrained Superfields, JHEP09 (2009) 066 [arXiv:0907.2441] [INSPIRE]. · doi:10.1088/1126-6708/2009/09/066
[71] J. Hughes, J. Liu and J. Polchinski, Supermembranes, Phys. Lett.B 180 (1986) 370 [INSPIRE]. · doi:10.1016/0370-2693(86)91204-9
[72] M. Bianchi, G. Pradisi and A. Sagnotti, Toroidal compactification and symmetry breaking in open string theories, Nucl. Phys.B 376 (1992) 365 [INSPIRE]. · doi:10.1016/0550-3213(92)90129-Y
[73] I. Antoniadis and M. Tuckmantel, Nonlinear supersymmetry and intersecting D-branes, Nucl. Phys.B 697 (2004) 3 [hep-th/0406010] [INSPIRE]. · Zbl 1236.81161 · doi:10.1016/j.nuclphysb.2004.07.027
[74] J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press (2007). · Zbl 1246.81199
[75] R. Kallosh and T. Wrase, Emergence of Spontaneously Broken Supersymmetry on an Anti-D3-Brane in KKLT dS Vacua, JHEP12 (2014) 117 [arXiv:1411.1121] [INSPIRE]. · doi:10.1007/JHEP12(2014)117
[76] M. Shmakova, One loop corrections to the D3-brane action, Phys. Rev.D 62 (2000) 104009 [hep-th/9906239] [INSPIRE].
[77] J.H. Schwarz, Superstring Theory, Phys. Rept.89 (1982) 223 [INSPIRE]. · Zbl 0578.22027 · doi:10.1016/0370-1573(82)90087-4
[78] A. De Giovanni, A. Santambrogio and D. Zanon, (α′)4corrections to the N = 2 supersymmetric Born-Infeld action, Phys. Lett.B 472 (2000) 94 [Erratum ibid.B 478 (2000) 457] [hep-th/9907214] [INSPIRE].
[79] M.B. Green and M. Gutperle, D instanton induced interactions on a D3-brane, JHEP02 (2000) 014 [hep-th/0002011] [INSPIRE]. · Zbl 0959.81028 · doi:10.1088/1126-6708/2000/02/014
[80] Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, Higher derivative couplings in theories with sixteen supersymmetries, Phys. Rev.D 92 (2015) 125017 [arXiv:1503.02077] [INSPIRE].
[81] M. Bianchi, J.F. Morales and C. Wen, Instanton corrections to the effective action ofN \[\mathcal{N} = 4\] SYM, JHEP11 (2015) 006 [arXiv:1508.00554] [INSPIRE]. · Zbl 1388.81286 · doi:10.1007/JHEP11(2015)006
[82] R. Kallosh, A. Karlsson and D. Murli, Origin of Soft Limits from Nonlinear Supersymmetry in Volkov-Akulov Theory, arXiv:1609.09127 [INSPIRE]. · Zbl 1377.81206
[83] T.E. Clark and S.T. Love, The Supercurrent and Spontaneously Broken Supersymmetry, Phys. Rev.D 39 (1989) 2391 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.