×

Colourful FKS subtraction. (English) Zbl 1301.81294

Summary: I formulate in a colour-friendly way the FKS method for the computation of QCD cross sections at the next-to-leading order accuracy. This is achieved through the definition of subtraction terms for squared matrix elements, constructed with single colour-dressed or pairs of colour-ordered amplitudes. The latter approach relies on the use of colour flows, is exact to all orders in \(N\), and is thus particularly suited to being organized as a systematic expansion in 1/\(N\).

MSC:

81V05 Strong interaction, including quantum chromodynamics
81U05 \(2\)-body potential quantum scattering theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory

References:

[1] M.L. Mangano and S.J. Parke, Multi-parton amplitudes in gauge theories, Phys. Rept.200 (1991) 301 [hep-th/0509223] [SPIRES]. · doi:10.1016/0370-1573(91)90091-Y
[2] F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys.B 306 (1988) 759 [SPIRES]. · doi:10.1016/0550-3213(88)90442-7
[3] F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP09 (2004) 006 [hep-th/0403047] [SPIRES]. · doi:10.1088/1126-6708/2004/09/006
[4] R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys.B 715 (2005) 499 [hep-th/0412308] [SPIRES]. · Zbl 1207.81088 · doi:10.1016/j.nuclphysb.2005.02.030
[5] F. Caravaglios, M.L. Mangano, M. Moretti and R. Pittau, A new approach to multi-jet calculations in hadron collisions, Nucl. Phys.B 539 (1999) 215 [hep-ph/9807570] [SPIRES]. · doi:10.1016/S0550-3213(98)00739-1
[6] P.D. Draggiotis, R.H.P. Kleiss and C.G. Papadopoulos, Multi-jet production in hadron collisions, Eur. Phys. J.C 24 (2002) 447 [hep-ph/0202201] [SPIRES].
[7] F. Caravaglios and M. Moretti, An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett.B 358 (1995) 332 [hep-ph/9507237] [SPIRES].
[8] C. Duhr, S. Hoeche and F. Maltoni, Color-dressed recursive relations for multi-parton amplitudes, JHEP08 (2006) 062 [hep-ph/0607057] [SPIRES]. · doi:10.1088/1126-6708/2006/08/062
[9] T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J.C 53 (2008) 501 [arXiv:0709.2881] [SPIRES]. · doi:10.1140/epjc/s10052-007-0495-0
[10] G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO wishlist:\( pp \to t\bar{t}b\bar{b} \), JHEP09 (2009) 109 [arXiv:0907.4723] [SPIRES]. · doi:10.1088/1126-6708/2009/09/109
[11] R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP10 (2009) 003 [arXiv:0908.4272] [SPIRES]. · doi:10.1088/1126-6708/2009/10/003
[12] R. Frederix, T. Gehrmann and N. Greiner, Integrated dipoles with MadDipole in the MadGraph framework, JHEP06 (2010) 086 [arXiv:1004.2905] [SPIRES]. · Zbl 1288.81145 · doi:10.1007/JHEP06(2010)086
[13] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys.B 467 (1996) 399 [hep-ph/9512328] [SPIRES]. · doi:10.1016/0550-3213(96)00110-1
[14] S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys.B 507 (1997) 295 [hep-ph/9706545] [SPIRES]. · doi:10.1016/S0550-3213(97)00574-9
[15] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503] [hep-ph/9605323] [SPIRES]. · doi:10.1016/S0550-3213(96)00589-5
[16] R.K. Ellis, W.T. Giele, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop amplitudes for W + 3 jet production in hadron collisions, JHEP01 (2009) 012 [arXiv:0810.2762] [SPIRES]. · doi:10.1088/1126-6708/2009/01/012
[17] A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP09 (2009) 106 [arXiv:0903.4665] [SPIRES]. · doi:10.1088/1126-6708/2009/09/106
[18] C.F. Berger et al., Precise predictions for W + 4 jet production at the Large Hadron Collider, Phys. Rev. Lett.106 (2011) 092001 [arXiv:1009.2338] [SPIRES]. · doi:10.1103/PhysRevLett.106.092001
[19] P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP08 (2010) 080 [arXiv:1006.0710] [SPIRES]. · Zbl 1290.81151 · doi:10.1007/JHEP08(2010)080
[20] V. Hirschi et al., Automation of one-loop QCD corrections, JHEP05 (2011) 044 [arXiv:1103.0621] [SPIRES]. · Zbl 1296.81138 · doi:10.1007/JHEP05(2011)044
[21] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [SPIRES]. · Zbl 1049.81644 · doi:10.1016/0550-3213(94)90179-1
[22] R.K. Ellis, W.T. Giele and Z. Kunszt, A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP03 (2008) 003 [arXiv:0708.2398] [SPIRES]. · doi:10.1088/1126-6708/2008/03/003
[23] R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys.B 822 (2009) 270 [arXiv:0806.3467] [SPIRES]. · Zbl 1196.81234 · doi:10.1016/j.nuclphysb.2009.07.023
[24] F.delAguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP07 (2004) 017 [hep-ph/0404120] [SPIRES]. · doi:10.1088/1126-6708/2004/07/017
[25] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [SPIRES]. · Zbl 1116.81067 · doi:10.1016/j.nuclphysb.2006.11.012
[26] Z. Bern, L.J. Dixon and D.A. Kosower, Progress in one-loop QCD computations, Ann. Rev. Nucl. Part. Sci.46 (1996) 109 [hep-ph/9602280] [SPIRES]. · doi:10.1146/annurev.nucl.46.1.109
[27] D.A. Kosower, Antenna factorization of gauge-theory amplitudes, Phys. Rev.D 57 (1998) 5410 [hep-ph/9710213] [SPIRES].
[28] W.T. Giele and E.W.N. Glover, Higher order corrections to jet cross-sections in e+e−annihilation, Phys. Rev.D 46 (1992) 1980 [SPIRES].
[29] J.M. Campbell, M.A. Cullen and E.W.N. Glover, Four jet event shapes in electron positron annihilation, Eur. Phys. J.C9 (1999) 245 [hep-ph/9809429] [SPIRES]. · doi:10.1007/s100529900034
[30] K. Odagiri, Color connection structure of supersymmetric QCD (2 → 2) processes, JHEP10 (1998) 006 [hep-ph/9806531] [SPIRES]. · doi:10.1088/1126-6708/1998/10/006
[31] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, to appear, https://launchpad.net/madgraph5. · Zbl 1298.81362
[32] G. Abelof and A. Gehrmann-De Ridder, Antenna subtraction for the production of heavy particles at hadron colliders, JHEP04 (2011) 063 [arXiv:1102.2443] [SPIRES]. · doi:10.1007/JHEP04(2011)063
[33] Z. Nagy and D.E. Soper, Parton showers with quantum interference, JHEP09 (2007) 114 [arXiv:0706.0017] [SPIRES]. · doi:10.1088/1126-6708/2007/09/114
[34] C.H. Chung, M. Krämer and T. Robens, An alternative subtraction scheme for next-to-leading order QCD calculations, JHEP06 (2011) 144 [arXiv:1012.4948] [SPIRES]. · Zbl 1298.81374 · doi:10.1007/JHEP06(2011)144
[35] S. Frixione and M. Grazzini, Subtraction at NNLO, JHEP06 (2005) 010 [hep-ph/0411399] [SPIRES]. · doi:10.1088/1126-6708/2005/06/010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.