×

Anisotropic triangulations via discrete Riemannian Voronoi diagrams. (English) Zbl 1427.68331

Summary: The construction of anisotropic triangulations is desirable for various applications, such as the numerical solving of partial differential equations and the representation of surfaces in graphics. To solve this notoriously difficult problem in a practical way, we introduce the discrete Riemannian Voronoi diagram, a discrete structure that approximates the Riemannian Voronoi diagram. This structure has been implemented and was shown to lead to good triangulations in \(\mathbb{R}^2\) and on surfaces embedded in \(\mathbb{R}^3\) as detailed in our experimental companion paper. In this paper, we study theoretical aspects of our structure. Given a finite set of points \(\mathcal{P}\) in a domain \(\Omega\) equipped with a Riemannian metric, we compare the discrete Riemannian Voronoi diagram of \(\mathcal{P}\) to its Riemannian Voronoi diagram. Both diagrams have dual structures called the discrete Riemannian Delaunay and the Riemannian Delaunay complex. We provide conditions that guarantee that these dual structures are identical. It then follows from previous results that the discrete Riemannian Delaunay complex can be embedded in \(\Omega\) under sufficient conditions, leading to an anisotropic triangulation with curved simplices. Furthermore, we show that, under similar conditions, the simplices of this triangulation can be straightened.

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

References:

[1] F. Aurenhammer and R. Klein, Voronoi diagrams, in Handbook of Computational Geometry, J. Sack and G. Urrutia, eds., Elsevier, 2000, pp. 201-290. · Zbl 0995.65024
[2] J.-D. Boissonnat, R. Dyer, and A. Ghosh, Delaunay triangulation of manifolds, Found. Comput. Math., 18 (2018), pp. 399-431. · Zbl 1395.57032
[3] J.-D. Boissonnat, R. Dyer, A. Ghosh, and S. Oudot, Equating the witness and restricted Delaunay complexes, Tech. Report CGL-TR-24, Computational Geometric Learning, 2011, http://cgl.uni-jena.de/Publications/WebHome.
[4] J.-D. Boissonnat, R. Dyer, A. Ghosh, and S. Y. Oudot, Only distances are required to reconstruct submanifolds, Comput. Geom., 66 (2017), pp. 32-67. · Zbl 1387.68243
[5] J.-D. Boissonnat, R. Dyer, A. Ghosh, and M. Wintraecken, Local criteria for triangulation of manifolds, in 34th International Symposium on Computational Geometry (SoCG 2018), Leibniz International Proceedings in Informatics (LIPIcs) 99, B. Speckmann and C. D. Tóth, eds., Dagstuhl, Germany, 2018, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, pp. 9:1-9:14, https://doi.org/10.4230/LIPIcs.SoCG.2018.9. · Zbl 1492.57017
[6] J.-D. Boissonnat, A. Lieutier, and M. Wintraecken, The reach, metric distortion, geodesic convexity and the variation of tangent spaces, in 34th International Symposium on Computational Geometry (SoCG 2018), Leibniz International Proceedings in Informatics (LIPIcs) 99, B. Speckmann and C. D. Tóth, eds., Dagstuhl, Germany, 2018, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, pp. 10:1-10:14, https://doi.org/10.4230/LIPIcs.SoCG.2018.10. · Zbl 1489.68340
[7] J.-D. Boissonnat, C. Wormser, and M. Yvinec, Anisotropic Delaunay mesh generation, SIAM J. Comput., 44 (2015), pp. 467-512, https://doi.org/10.1137/140955446. · Zbl 1329.68259
[8] M. Campen, M. Heistermann, and L. Kobbelt, Practical anisotropic geodesy, in Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing, SGP ’13, Eurographics Association, 2013, pp. 63-71.
[9] G. D. Can͂as and S. J. Gortler, Orphan-free anisotropic Voronoi diagrams, Discrete Comput. Geom., 46 (2011), pp. 526-541. · Zbl 1228.90150
[10] G. D. Can͂as and S. J. Gortler, Duals of orphan-free anisotropic Voronoi diagrams are embedded meshes, in SoCG, ACM, 2012, pp. 219-228. · Zbl 1293.68283
[11] T. Cao, H. Edelsbrunner, and T. Tan, Proof of correctness of the digital Delaunay triangulation algorithm, Comput. Geom., 48 (2015), pp. 507-519. · Zbl 1329.65055
[12] I. Chavel, Riemannian Geometry. A Modern Introduction, 2nd ed., Cambridge University Press, 2006. · Zbl 1099.53001
[13] S.-W. Cheng, T. K. Dey, E. A. Ramos, and R. Wenger, Anisotropic surface meshing, in Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2006, pp. 202-211. · Zbl 1192.68736
[14] E. F. D’Azevedo and R. B. Simpson, On optimal interpolation triangle incidences, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 1063-1075, https://doi.org/10.1137/0910064. · Zbl 0705.41001
[15] T. K. Dey, F. Fan, and Y. Wang, Graph induced complex on point data, Comput. Geom., 48 (2015), pp. 575-588. · Zbl 1329.62295
[16] Q. Du and D. Wang, Anisotropic centroidal Voronoi tessellations and their applications, SIAM J. Sci. Comput., 26 (2005), pp. 737-761, https://doi.org/10.1137/S1064827503428527. · Zbl 1121.65306
[17] R. Dyer, G. Vegter, and M. Wintraecken, Riemannian simplices and triangulations, Geom. Dedicata, 179 (2015), pp. 91-138, https://doi.org/10.1007/s10711-015-0069-5. · Zbl 1333.57036
[18] R. Dyer, H. Zhang, and T. Möller, Surface sampling and the intrinsic Voronoi diagram, Comput. Graphics Forum, 27 (2008), pp. 1393-1402.
[19] S. Funke, C. Klein, K. Mehlhorn, and S. Schmitt, Controlled perturbation for Delaunay triangulations, in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2005, pp. 1047-1056. · Zbl 1297.68240
[20] M. Garland and P. S. Heckbert, Surface simplification using quadric error metrics, in ACM SIGGRAPH, 1997, pp. 209-216.
[21] F. Hiai and D. Petz, Introduction to Matrix Analysis and Applications, Universitext, 1st ed., Springer, 2014, https://link.springer.com/book/10.1007 · Zbl 1303.15001
[22] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, 2012.
[23] H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math., 30 (1977), pp. 509-541. · Zbl 0354.57005
[24] F. Labelle and J. R. Shewchuk, Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation, in SCG’ 03: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, ACM, 2003, pp. 191-200. · Zbl 1375.68154
[25] G. Leibon, Random Delaunay Triangulations, the Thurston-Andreev Theorem, and Metric Uniformization, Ph.D. thesis, UCSD, 1999.
[26] J.-M. Mirebeau, Optimal meshes for finite elements of arbitrary order, Constr. Approx., 32 (2010), pp. 339-383. · Zbl 1202.65015
[27] P. Niyogi, S. Smale, and S. Weinberger, Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom., 39 (2008), pp. 419-441. · Zbl 1148.68048
[28] G. Peyré, M. Péchaud, R. Keriven, and L. D. Cohen, Geodesic methods in computer vision and graphics, Found. Trends. Comput. Graph. Vis., 5 (2010), pp. 197-397. · Zbl 1217.65042
[29] G. Rong and T.-S. Tan, Variants of jump flooding algorithm for computing discrete Voronoi diagrams, in 4th International Symposium on Voronoi Diagrams in Science and Engineering, ISVD’07, IEEE, 2007, pp. 176-181.
[30] C. Rourke and B. Sanderson, Introduction to Piecewise-Linear Topology, Springer Science & Business Media, 2012.
[31] M. Rouxel-Labbé, M. Wintraecken, and J.-D. Boissonnat, Discretized Riemannian Delaunay triangulations, in Proc. of the 25th Intern. Mesh. Round., Elsevier, 2016.
[32] J. R. Shewchuk, What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures, in Proc. of the 11th International Meshing Roundtable, 2002.
[33] E. Sperner, Fifty years of further development of a combinatorial lemma, in Numerical Solution of Highly Nonlinear Problems, North-Holland, 1980, pp. 183-197. · Zbl 0446.57033
[34] Z. Yuan, G. Rong, X. Guo, and W. Wang, Generalized Voronoi diagram computation on GPU, in the Eighth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD), IEEE, 2011, pp. 75-82.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.