×

On some measures of complexity of finite abelian groups. (English. Russian original) Zbl 1405.20049

Discrete Math. Appl. 27, No. 2, 81-95 (2017); translation from Diskretn. Mat. 27, No. 3, 25-43 (2015).
Summary: Let a finite Abelian multiplicative group \(G\) be specified by the basis \(B = \{a_1, a_2, \dots, a_q\}\), that is, the group \(G\) is decomposed into a direct product of cyclic subgroups generated by the elements of the set \(B: G = \langle a_1\rangle \times \langle a_2\rangle \times \dots \times \langle a_q\rangle\). The complexity \(L(g;B)\) of an element \(g\) of the group \(G\) in the basis \(B\) is defined as the minimum number of multiplication operations required to compute the element \(g\) given the basis \(B\) (it is allowed to use the results of intermediate computations many times). Let \(L(G,B) = \mathop{\max}\limits_{g \in G} L(g;B)\), \(LM(G) = \mathop{\max}\limits_{B} L(G,B)\), \(Lm(G)=\mathop{\min}\limits_{B} L(G,B)\), \(M(n) = \mathop{\max}\limits_{G:|G| \leq n} LM(G)\), \(m(n) = \mathop{\max}\limits_{G : |G| \leq n} Lm(G)\), \(M_{\mathrm{av}}(n) = \left( \sum\limits_{G : |G|= n} LM(G)\right)/A(n)\), \(m_{\mathrm{av}}(n) = \left( \sum\limits_{G : |G|= n} Lm(G)\right)/A(n)\), where \(A(n)\) is the number of Abelian groups of order \(n\). In this work the asymptotic estimates for the quantities \(L(G,B)\), \(M(n)\), \(m(n)\), \(M_{\mathrm{av}}(n)\), and \(m_{\mathrm{av}}(n)\) are established.

MSC:

20K01 Finite abelian groups
68Q25 Analysis of algorithms and problem complexity
Full Text: DOI

References:

[1] Gashkov S. B., Kochergin V. V., “On additive chains of vectors, gate schemes and the complexity of calculating degrees”, Metody diskretnogo analiza v teoriigrafov i slozhnosti, 52, Novosibirsk, 1992, 22-40 (in Russian).; Gashkov, S. B.; Kochergin, V. V., Metody diskretnogo analiza v teoriigrafov i slozhnosti, 52, 22-40 (1992) · Zbl 0849.68055
[2] Glukhov M. M., Zubov A. Yu., “On the lengths of symmetric and alternating groups of substitutions in various systems of generators”, Matematicheskie voprosy kibernetiki, 8, Nauka, Moscow, 1999, 5-32 (in Russian).; Glukhov, M. M.; Zubov, A. Yu., Matematicheskie voprosy kibernetiki, 8, 5-32 (1999) · Zbl 1194.20004
[3] Knuth D., The art of computer programming, 2, Mir, Moscow, 1977 (in Russian).; Knuth, D., The art of computer programming, 2 (1977) · Zbl 0417.68001
[4] Kochergin V. V., “On the complexity of computations in finite abelian groups”, Doklady AN SSSR, 317:2 (1991), 291-294 (in Russian).; Kochergin, V. V., “On the complexity of computations in finite abelian groups”, Doklady AN SSSR, 317, 2, 291-294 (1991) · Zbl 0756.20009
[5] Kochergin V. V., “On the complexity of computations in finite Abelian groups”, Matematicheskie voprosy kibernetiki, 4, Nauka, Moscow, 1992, 178-217 (in Russian).; Kochergin, V. V., Matematicheskie voprosy kibernetiki, 4, 178-217 (1992) · Zbl 0828.20040
[6] Kochergin V. V., “On the complexity of computation in finite Abelian, nilpotent and soluble groups”, Discrete Math. Appl., 3:3 (1993), 297-319.; Kochergin, V. V., “On the complexity of computation in finite Abelian, nilpotent and soluble groups”, Discrete Math. Appl, 3, 3, 297-319 (1993) · Zbl 0840.20013
[7] Kochergin V. V., “On the computation of powers sets”, Discrete Math. Appl., 4:2 (1994), 119-128.; Kochergin, V. V., “On the computation of powers sets”, Discrete Math. Appl, 4, 2, 119-128 (1994) · Zbl 0925.68333
[8] Kochergin V. V., “On the complexity of monomials and sets of powers computations”, Diskretnyi analiz (Tr. RAN. Sib. otdelenie. In-t matematiki; T. 27), Izd. Inst. mat. SO RAN, Novosibirsk, 1994, 94-107 (in Russian).; Kochergin, V. V., “On the complexity of monomials and sets of powers computations” Diskretnyi analiz (Tr. RAN. Sib. otdelenie. In-t matematiki; T. 27), Izd. Inst. mat. SO RAN, Novosibirsk, 94-107 (1994)
[9] Kochergin V. V., “On the complexity of computations in finite nilpotent groups”, Diskretnyi analiz i issledovanie operatsiy, 3:1 (1996), 43-51 (in Russian).; Kochergin, V. V., “On the complexity of computations in finite nilpotent groups”, Diskretnyi analiz i issledovanie operatsiy, 3, 1, 43-51 (1996) · Zbl 0866.68049
[10] Kochergin V. V., “Some problems of the complexity of calculating elements in finite Abelian groups”, Materialy XI Mezhdunar. sem. «Diskretnaya matematika i ee prilozheniya», Izd-vo mekh.-mat. f-ta MGU, Moscow, 2012, 135-138 (in Russian).; Kochergin, V. V., Izd-vo mekh.-mat, 135-138 (2012)
[11] Kochergin V. V., “On a lower bound for the complexity of computation of elements of finite Abelian groups”, Problemy teoreticheskoy kibernetiki. Materialy XVII mezhdunar. konf. (Kazan’, 16-20 iyunya 2014 g.), Otechestvo, Kazan, 2014, 155-158 (in Russian).; Kochergin, V. V., Problemy teoreticheskoy kibernetiki. Materialy XVII mezhdunar. konf. (Kazan’, 16-20 iyunya 2014 g.), 155-158 (2014)
[12] Kochergin V. V., “Improvement of the estimates of the computational complexity for monomials and sets of powers in Bellman’s and Knuth’s problems”, J. Appl. Indust. Math., 9:1 (2015), 68-82.; Kochergin, V. V., “Improvement of the estimates of the computational complexity for monomials and sets of powers in Bellman’s and Knuth’s problems”, J. Appl. Indust. Math, 9, 1, 68-82 (2015) · Zbl 1324.68052
[13] Lupanov O.B., “On the synthesis of some classes of control systems”, Problemy kibernetiki, 10, Fizmatgiz, Moscow, 1963, 63-97 (in Russian).; Lupanov, O. B., Problemy kibernetiki, 10, 63-97 (1963) · Zbl 0126.32605
[14] Ol’shanskiy A. Yu., “On the complexity of computations in groups”, Sorosovskiy obrazovatel’nyy zhurnal, 6:3 (2000), 118-123 (in Russian).; Ol’shanskiy, A. Yu., “On the complexity of computations in groups”, Sorosovskiy obrazovatel’nyy zhurnal, 6, 3, 118-123 (2000) · Zbl 0956.20026
[15] Seneta E., Regularly Varying Functions, 1976, 113 pp.; Seneta, E., Regularly Varying Functions, 113 (1976) · Zbl 0324.26002
[16] Sidorenko A. F., “Complexity of additive computations of families of integer linear forms”, Zap. nauchn. sem. LOMI, 105, Nauka, Leningrad, 1981, 53-61.; Sidorenko, A. F., Zap. nauchn. sem. LOMI, 105, 53-61 (1981) · Zbl 0467.68043
[17] Hall M., Combinatorial theory, Blaisdell Publ. Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1967, x+310 pp.; Hall, M., Combinatorial theory, x+310 (1967) · Zbl 0196.02401
[18] Chandrasekharan K., Introduction to Analytic Number Theory, Springer, Berlin, 1968, 144 pp.; Chandrasekharan, K., Introduction to Analytic Number Theory, 144 (1968) · Zbl 0169.37502
[19] Andrews G. E., The Theory of Partitions, Cambridge University Press, 1984.; Andrews, G. E., The Theory of Partitions (1984) · Zbl 0655.10001
[20] Brauer A., “On addition chains”, Bull. Amer. Math. Soc., 45 (1939), 736-739.; Brauer, A., “On addition chains”, Bull. Amer. Math. Soc, 45, 736-739 (1939) · JFM 65.0154.02
[21] Bellman R. E., “Addition chains of vectors (Advanced problem 5125)”, Amer. Math. Monthly, 70 (1963), 765.; Bellman, R. E., “Addition chains of vectors (Advanced problem 5125)”, Amer. Math. Monthly, 70, 765 (1963)
[22] Downey P., Leong B., Sethi R., “Computing sequences with addition chains”, SIAM J. Comput., 10 (1981), 638-646.; Downey, P.; Leong, B.; Sethi, R., “Computing sequences with addition chains”, SIAM J. Comput, 10, 638-646 (1981) · Zbl 0462.68021
[23] Knuth D. E., Papadimitriou C. H., “Duality in addition chains”, Bull. Ass. Theor. Comput. Sci., 13 (1981), 2-4.; Knuth, D. E.; Papadimitriou, C. H., “Duality in addition chains”, Bull. Ass. Theor. Comput. Sci, 13, 2-4 (1981)
[24] Olivos J., “On vectorial addition chains”, J. Algorithms, 2:1 (1981), 13-21.; Olivos, J., “On vectorial addition chains”, J. Algorithms, 2, 1, 13-21 (1981) · Zbl 0466.68034
[25] Schönhage A., “A lower bound for the lenght of addition chains”, Theor. Comput. Sci., 1 (1975), 1-12.; Schönhage, A., “A lower bound for the lenght of addition chains”, Theor. Comput. Sci, 1, 1-12 (1975) · Zbl 0307.68032
[26] Straus E. G., “Addition chains of vectors”, Amer. Math. Monthly, 71 (1964), 806-808.; Straus, E. G., “Addition chains of vectors”, Amer. Math. Monthly, 71, 806-808 (1964)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.