×

Multiscale simulation of the responses of discrete nanostructures to extreme loading conditions based on the material point method. (English) Zbl 1423.74082

Summary: A particle-based multiscale simulation procedure is being developed that includes a concurrent link between the Material Point Method (MPM) and Dissipative Particle Dynamics (DPD) and a hierarchical bridge from Molecular Dynamics (MD) to DPD. In this paper, an interfacial scheme is presented that can be used to effectively cast spatial discretization at different scales into a unified MPM framework. The advantage to the approach is that the interactions among discrete nanostructures under extreme loading conditions can be simulated without the need for master/slave nodes as required in the Finite Element Method and other similar mesh-based methods. The proposed multiscale simulation scheme is applied to representative cases: tensile extension of a single nanobar, isothermal compression of a cube-shaped nanoparticle in a high-pressure fluid, and the behavior of nanosphere pairs and nanosphere-nanorod assemblies in a confining fluid for different initial arrangements of the components. The concurrent DPD/MPM results are in good qualitative agreement with the predictions obtained using a DPD-only description and all-atom MD, but require much less computational time as compared to all-atom simulations.

MSC:

74A60 Micromechanical theories
74S30 Other numerical methods in solid mechanics (MSC2010)
Full Text: DOI

References:

[1] Koh, S. J.A.; Lee, H. P., Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires, Nanotechnology, 17, 3451, (2006)
[2] Jiang, S.; Chen, Z.; Gan, Y.; Oloriegbe, S. Y.; Sewell, T. D.; Thompson, D. L., Size effects on the wave propagation and deformation pattern in copper nanobars under symmetric longitudinal impact loading, J. Phys. D: Appl. Phys., 45, (2012)
[3] Jiang, S.; Zhang, Y.; Gan, Y.; Chen, Z.; Peng, H., Molecular dynamics study of neck growth in laser sintering of hollow silver nanoparticles with different heating rates, J. Phys. D: Appl. Phys., 46, (2013)
[4] Lieber, C. M., Nanoscale science and technology: building a big future from small things, MRS Bull., 28, 486-491, (2003)
[5] Rossi, C.; Zhang, K.; Esteve, D.; Alphonse, P.; Tailhades, P.; Vahlas, C., Nanoenergetic materials for MEMS: A review, J. Microelectromech. Syst., 16, 919-931, (2007)
[6] Kimberley, J.; Cooney, R.; Lambros, J.; Chasiotis, I.; Barker, N., Failure of au RF-MEMS switches subjected to dynamic loading, Sensors Actuators A: phys., 154, 140-148, (2009)
[7] Brown, T. G.; Davis, B.; Hepner, D.; Faust, J.; Myers, C.; Muller, C.; Harkins, T.; Holis, M.; Placzankis, B., Strap-down microelectromechanical (MEMS) sensors for high-g munition applications, IEEE Trans. Magn., 37, 336-342, (2001)
[8] Brown, T. G., Harsh military environments and microelectromechanical (MEMS) devices, (Sensors, 2003. Proceedings of IEEE, (2003), IEEE), 753-760
[9] Apperson, S.; Shende, R.; Subramanian, S.; Tappmeyer, D.; Gangopadhyay, S.; Chen, Z.; Gangopadhyay, K.; Redner, P.; Nicholich, S.; Kapoor, D., Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites, Appl. Phys. Lett., 91, (2007)
[10] Gan, Y.; Chen, Z.; Gangopadhyay, K.; Bezmelnitsyn, A.; Gangopadhyay, S., An equation of state for the detonation product of copper oxide/aluminum nanothermite composites, J. Nanopart. Res., 12, 719-726, (2010)
[11] Chen, Z.; Jiang, S.; Gan, Y.; Oloriegbe, Y.; Sewell, T. D.; Thompson, D. L., Size effects on the impact response of copper nanobeams, J. Appl. Phys., 111, (2012)
[12] Chen, Z.; Jiang, S.; Gan, Y., The “inverse Hall-petch” effect on the impact response of single crystal copper, Acta Mech. Sin., 28, 1042-1048, (2012) · Zbl 1293.74057
[13] Jiang, S.; Chen, Z.; Zhang, H.; Zheng, Y.; Li, H., Impact-induced bending response of single crystal and five-fold twinned nanowires, Int. J. Multiscale Comput. Eng., 11, 1-16, (2013)
[14] Jiang, S.; Shen, Y.; Zheng, Y.; Chen, Z., Formation of quasi-icosahedral structures with multi-conjoint fivefold deformation twins in fivefold twinned metallic nanowires, Appl. Phys. Lett., 103, (2013)
[15] Sulsky, D.; Chen, Z.; Schreyer, H. L., A particle method for history-dependent materials, Comput. Methods Appl. Mech. Engrg., 118, 179-196, (1994) · Zbl 0851.73078
[16] Chen, Z.; Hu, W.; Shen, L.; Xin, X.; Brannon, R., An evaluation of the MPM for simulating dynamic failure with damage diffusion, Eng. Fract. Mech., 69, 1873-1890, (2002)
[17] Zhang, D. Z.; Zou, Q.; VanderHeyden, W. B.; Ma, X., Material point method applied to multiphase flows, J. Comput. Phys., 227, 3159-3173, (2008) · Zbl 1329.76288
[18] Bardenhagen, S.; Kober, E., The generalized interpolation material point method, Comput. Model. Eng. Sci., 5, 477-496, (2004)
[19] Sadeghirad, A.; Brannon, R.; Burghardt, J., A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations, Internat. J. Numer. Methods Engrg., 86, 1435-1456, (2011) · Zbl 1235.74371
[20] Zhang, D. Z.; Ma, X.; Giguere, P. T., Material point method enhanced by modified gradient of shape function, J. Comput. Phys., 230, 6379-6398, (2011) · Zbl 1419.76513
[21] Ma, J.; Lu, H.; Wang, B.; Roy, S.; Hornung, R.; Wissink, A.; Komanduri, R., Multiscale simulations using generalized interpolation material point (GIMP) method and SAMRAI parallel processing, CMES: Comput. Model. Eng. Sci., 8, 135-152, (2005) · Zbl 1106.74427
[22] Lu, H.; Daphalapurkar, N.; Wang, B.; Roy, S.; Komanduri, R., Multiscale simulation from atomistic to continuum-coupling molecular dynamics (MD) with the material point method (MPM), Phil. Mag., 86, 2971-2994, (2006)
[23] Liu, Y.; Wang, H.-K.; Zhang, X., A multiscale framework for high-velocity impact process with combined material point method and molecular dynamics, Int. J. Mech. Mater. Des., 9, 127-139, (2013)
[24] Chen, Z.; Jiang, S.; Gan, Y.; Liu, H.; Sewell, T. D., A particle-based multiscale simulation procedure within the material point method framework, Comput. Part. Mech., 147-158, (2014), The quantities \(s^s\) in Eq. (2.8), \(s_p^t\) in Eq. (s3a), and \(s_p^{t + \operatorname{\Delta} t} \) (s14) are stress tensors and should have been shown in bold as tensors in this reference. These typos are all corrected in the current article
[25] Rabczuk, T.; Xiao, S.; Sauer, M., Coupling of mesh-free methods with finite elements: basic concepts and test results, Comm. Numer. Methods Engrg., 22, 1031-1065, (2006) · Zbl 1109.65082
[26] Groot, R. D.; Warren, P. B., Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys., 107, 4423, (1997)
[27] Hoogerbrugge, P.; Koelman, J., Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys. Lett., 19, 155, (1992)
[28] Lísal, M.; Brennan, J. K.; Smith, W. R., Mesoscale simulation of polymer reaction equilibrium: combining dissipative particle dynamics with reaction ensemble Monte Carlo. I. polydispersed polymer systems, J. Chem. Phys., 125, (2006)
[29] Sutton, A.; Chen, J., Long-range finnis-sinclair potentials, Phil. Mag. Lett., 61, 139-146, (1990)
[30] Gan, Y.; Chen, Z.; Jiang, S.; Sewell, T. D.; Thompson, D. L.; Oloriegbe, S. Y., A mesoscopic-scale scheme for modeling shock wave propagation in metals, Comput. Part. Method, (2015), in preparation
[31] Berendsen, H. J.; Postma, J. P.M.; van Gunsteren, W. F.; DiNola, A.; Haak, J., Molecular dynamics with coupling to an external Bath, J. Chem. Phys., 81, 3684-3690, (1984)
[32] Faken, D.; Jónsson, H., Systematic analysis of local atomic structure combined with 3D computer graphics, Comput. Mater. Sci., 2, 279-286, (1994)
[33] Yang, L.; Gan, Y.; Zhang, Y.; Chen, J., Molecular dynamics simulation of neck growth in laser sintering of different-sized gold nanoparticles under different heating rates, Appl. Phys. A, 106, 725-735, (2012)
[34] Pan, H.; Ko, S. H.; Grigoropoulos, C. P., The solid-state neck growth mechanisms in low energy laser sintering of gold nanoparticles: A molecular dynamics simulation study, J. Heat Transf., 130, (2008)
[35] Jiang, S.; Zhang, H.; Zheng, Y.; Chen, Z., Loading path effect on the mechanical behaviour and fivefold twinning of copper nanowires, J. Phys. D: Appl. Phys., 43, (2010)
[36] Mishin, Y.; Mehl, M.; Papaconstantopoulos, D.; Voter, A.; Kress, J., Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B, 63, (2001)
[37] Chen, Z.; Jiang, S.; Sewell, T. D.; Gan, Y.; Oloriegbe, S. Y.; Thompson, D. L., Effects of copper nanoparticle inclusions on pressure-induced fluid-polynanocrystalline structural transitions in krypton, J. Appl. Phys., 116, (2014)
[38] Gan, Y.; Jiang, S., Ultrafast laser-induced premelting and structural transformation of gold nanorod, J. Appl. Phys., 113, (2013)
[39] Jiang, S.; Zhang, H.; Zheng, Y.; Chen, Z., Atomistic study of the mechanical response of copper nanowires under torsion, J. Phys. D: Appl. Phys., 42, (2009)
[40] Zheng, Y.; Zhang, H.; Chen, Z.; Jiang, S., Deformation and stability of copper nanowires under bending, Int. J. Multiscale Comput. Eng., 7, 205-215, (2009)
[41] Plimpton, S., Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1-19, (1995) · Zbl 0830.65120
[42] Rice, B. M., Multiscale modeling of energetic materials: easy to say, Harder to do, (Shock Compression of Condensed Matter-2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, (2012), AIP Publishing), 1241-1246
[43] Rice, B. M., A perspective on modeling the multiscale response of energetic materials, Bull. Amer. Phys. Soc., 60, (2015)
[44] Lian, Y.; Yang, P.; Zhang, X.; Zhang, F.; Liu, Y.; Huang, P., A mesh-grading material point method and its parallelization for problems with localized extreme deformation, Comput. Methods Appl. Mech. Engrg., 289, 291-315, (2015) · Zbl 1423.74901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.