×

Subprojective Nakano spaces. (English) Zbl 1383.46010

Recall that a Banach space \(X\) is said to be subprojective if every infinite-dimensional subspace of \(X\) has an infinite-dimensional subspace which is complemented in \(X\). The authors prove that separable Nakano sequence spaces \(\ell_{(p_{n})}\) are subprojective. Moreover, by using the results of F. L. Hernández and C. Ruiz [J. Math. Anal. Appl. 389, No. 2, 899–907 (2012; Zbl 1257.46012)] on subspaces of separable Nakano function spaces, they show that \(L^{p(\cdot)}\) is subprojective if and only if it does not contain a subspace isomorphic to \(l_{q}\) with \(q<2\).

MSC:

46B03 Isomorphic theory (including renorming) of Banach spaces
46B45 Banach sequence spaces
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

Citations:

Zbl 1257.46012
Full Text: DOI

References:

[1] Albiac, F.; Kalton, N. J., Topics in Banach Space Theory (2006), Springer · Zbl 1094.46002
[2] Diening, L.; Harjulehto, P.; Hästö, P.; Ružička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., vol. 2017 (2011), Springer · Zbl 1222.46002
[3] Flores, J.; Hernández, F. L.; Spinu, E.; Tradacete, P.; Troitsky, V. G., Disjointly homogeneous Banach lattices: duality and complementation, J. Funct. Anal., 266, 5858-5885 (2014) · Zbl 1315.46024
[4] González, M.; Martínez-Abejón, A.; Salas-Brown, M., Perturbation classes for semi-Fredholm operators on subprojective and superprojective spaces, Ann. Acad. Sci. Fenn. Math., 36, 481-491 (2011) · Zbl 1232.47015
[5] Guerre-Delabrière, S., Classical Sequences in Banach Spaces (1992), Marcel Dekker · Zbl 0756.46007
[6] Hernández, F. L.; Ruiz, C., \(l_q\)-structure of variable exponent spaces, J. Math. Anal. Appl., 389, 899-907 (2012) · Zbl 1257.46012
[7] Hernández, F. L.; Ruiz, C., Averaging and orthogonal operators on variable exponent spaces \(L^{p(\cdot)}(\Omega)\), J. Math. Anal. Appl.. J. Math. Anal. Appl., J. Math. Anal. Appl., 435, 1018-1019 (2016), corrections in · Zbl 1341.42038
[8] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces I. Sequence Spaces (1977), Springer · Zbl 0362.46013
[9] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces II. Function Spaces (1979), Springer · Zbl 0403.46022
[10] Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034 (1983), Springer · Zbl 0557.46020
[11] Nakano, H., Modulared sequence spaces, Proc. Japan Acad., 27, 411-415 (1951) · Zbl 0044.11302
[12] Oikhberg, T.; Spinu, E., Subprojective Banach spaces, J. Math. Anal. Appl., 424, 613-635 (2015) · Zbl 1338.46013
[13] Peirats, V.; Ruiz, C., On \(l^p\)-copies in Musielak-Orlicz sequence spaces, Arch. Math., 58, 164-173 (1992) · Zbl 0728.46015
[14] Whitley, R. J., Strictly singular operators and their conjugates, Trans. Amer. Math. Soc., 113, 252-261 (1964) · Zbl 0124.06603
[15] Woo, J. Y., On modular sequence spaces, Studia Math., 48, 271-289 (1973) · Zbl 0264.46007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.