×

Subprojective Banach spaces. (English) Zbl 1338.46013

A Banach space \(X\) is said to be subprojective if any of its infinite-dimensional subspaces contains a further infinite-dimensional subspace complemented in \(X\). The paper under review presents nice results on stability type properties concerning subprojectivity. Here are some of them. Let \(E, X_1, X_2, \ldots\) be Banach spaces with \(E\) possessing a \(1\)-unconditional basis. Then \((\sum_n X_n)_E\) is subprojective if and only if each of the spaces \(E, X_1, X_2, \ldots\) is subprojective. The subprojectivity is not a three-space property. Every subprojective space contains a subspace with an unconditional basis. There is a Banach space with an unconditional basis and without a subprojective subspace. The space of all bounded linear operators on an infinite-dimensional Banach space is not subprojective. Some results concern tensor products and twisted sums of subprojective Banach spaces.

MSC:

46B03 Isomorphic theory (including renorming) of Banach spaces
46B08 Ultraproduct techniques in Banach space theory
46B28 Spaces of operators; tensor products; approximation properties
Full Text: DOI

References:

[1] Aiena, P., Fredholm and Local Spectral Theory, with Applications to Multipliers (2004), Kluwer: Kluwer Dordrecht · Zbl 1077.47001
[2] Alspach, Dale E., Good \(l_2\)-subspaces of \(L_p, p > 2\), Banach J. Math. Anal., 3, 2, 49-54 (2009) · Zbl 1194.46014
[3] Arazy, J., Basic sequences, embeddings, and the uniqueness of the symmetric structure in unitary matrix spaces, J. Funct. Anal., 40, 302-340 (1981) · Zbl 0457.47035
[4] Arazy, J.; Lindenstrauss, J., Some linear topological properties of the spaces \(C_p\) of operators on Hilbert space, Compos. Math., 30, 81-111 (1975) · Zbl 0302.47034
[5] Bessaga, C.; Pełczynski, A., On bases and unconditional convergence of series in Banach spaces, Studia Math., 17, 151-164 (1958) · Zbl 0084.09805
[6] Bu, Q.; Buskes, G.; Popov, A.; Tcaciuc, A.; Troitsky, V., The 2-concavification of a Banach lattice equals the diagonal of the Fremlin tensor square, Positivity, 17, 283-298 (2013) · Zbl 1281.46021
[7] Defant, A.; Floret, K., Tensor Norms and Operator Ideals (1993), North-Holland: North-Holland Amsterdam · Zbl 0774.46018
[8] Diestel, J.; Fourie, J.; Swart, J., The Metric Theory of Tensor Products. Grothendieck’s Résumé Revisited (2008), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1186.46004
[9] Diestel, J.; Jarchow, H.; Tonge, A., Absolutely Summing Operators (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0855.47016
[10] Dixmier, J., \(C^\ast \)-Algebras (1977), North-Holland: North-Holland Amsterdam · Zbl 0366.17007
[11] Fabian, M.; Habala, P.; Hajek, P.; Montesinos, V.; Pelant, J.; Zizler, V., Functional Analysis and Infinite-Dimensional Geometry (2001), Springer: Springer New York · Zbl 0981.46001
[12] Feder, M., On subspaces of spaces with an unconditional basis and spaces of operators, Illinois J. Math., 24, 196-205 (1980) · Zbl 0411.46009
[13] Figiel, T.; Johnson, W. B.; Tzafriri, L., On Banach lattices and spaces having local unconditional structure, with applications to Lorentz function spaces, J. Approx. Theory, 13, 395-412 (1975) · Zbl 0307.46007
[14] Flores, J.; Hernandez, F. L.; Spinu, E.; Tradacete, P.; Troitsky, V. G., Disjointly homogeneous Banach lattices: duality and complementation, J. Funct. Anal., 226, 5858-5885 (2014) · Zbl 1315.46024
[16] Gonzalez, M.; Martinez-Abejon, A.; Salas-Brown, M., Perturbation classes for semi-Fredholm operators on subprojective and superprojective spaces, Ann. Acad. Sci. Fenn. Math., 36, 481-491 (2011) · Zbl 1232.47015
[17] Gordon, Y.; Lewis, D.; Retherford, J., Banach ideals of operators with applications, J. Funct. Anal., 14, 85-129 (1973) · Zbl 0272.47024
[18] Gowers, T.; Maurey, B., Banach spaces with small spaces of operators, Math. Ann., 307, 543-568 (1997) · Zbl 0876.46006
[19] Jensen, H., Scattered \(C^\ast \)-algebras, Math. Scand., 41, 308-314 (1977) · Zbl 0372.46059
[20] Jensen, H., Scattered \(C^\ast \)-algebras II, Math. Scand., 43, 308-310 (1978) · Zbl 0423.46050
[21] Johnson, W.; Maurey, B.; Schechtman, G.; Tzafriri, L., Symmetric structures in Banach spaces, Mem. Amer. Math. Soc., 19, 217 (1979), v+298 pp · Zbl 0421.46023
[22] Kalton, N. J.; Peck, N. T., Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc., 255, 1-30 (1979) · Zbl 0424.46004
[23] Kalton, N. J.; Wojtaszczyk, P., On nonatomic Banach lattices and Hardy spaces, Proc. Amer. Math. Soc., 120, 731-741 (1994) · Zbl 0820.46017
[24] Kamińska, A.; Maligranda, L.; Persson, L., Convexity, concavity, type and cotype of Lorentz spaces, Indag. Math. (N.S.), 9, 367-382 (1998) · Zbl 0937.46027
[25] Kusuda, M., A characterization of scattered \(C^\ast \)-algebras and its application to \(C^\ast \)-crossed products, J. Operator Theory, 63, 417-424 (2010) · Zbl 1224.46116
[26] Lacey, E., The Isometric Theory of Classical Banach Spaces (1974), Springer: Springer Berlin · Zbl 0285.46024
[27] Lindenstrauss, Y.; Tzafriri, L., Classical Banach Spaces I (1977), Springer: Springer Berlin · Zbl 0362.46013
[28] Lindenstrauss, Y.; Tzafriri, L., Classical Banach Spaces II (1979), Springer: Springer Berlin · Zbl 0403.46022
[29] Meyer-Nieberg, P., Banach Lattices (1991), Springer: Springer Berlin · Zbl 0743.46015
[30] Muller, P. F.X.; Schechtman, G., On complemented subspaces of \(H_1\) and VMO, (Geometric Aspects of Functional Analysis (1987-1988) (1989), Springer: Springer Berlin), 113-125 · Zbl 0687.46014
[31] Oikhberg, T.; Spinu, E., Domination of operators in the non-commutative setting, Studia Math., 219, 35-67 (2013) · Zbl 1296.47033
[32] Oja, E., Sur la réflexivité des produits tensoriels et les sous-espaces des produits tensoriels projectifs, Math. Scand., 51, 275-288 (1982) · Zbl 0488.46058
[33] Ostrovskii, M., Topologies on the set of all subspaces of a Banach space and related questions of Banach space geometry, Quaest. Math., 17, 259-319 (1994) · Zbl 0807.46014
[34] Pedersen, G., \(C^\ast \)-Algebras and Their Automorphism Groups (1979), Academic Press: Academic Press London, New York · Zbl 0416.46043
[35] Pełczynski, A.; Semadeni, Z., Spaces of continuous functions. III. Spaces \(C(\Omega)\) for \(Ω\) without perfect subsets, Studia Math., 18, 211-222 (1959) · Zbl 0091.27803
[36] Pisier, G.; Xu, Q., Non-commutative \(L_p\)-spaces, (Handbook of Banach Spaces, vol. 2 (2003), North-Holland: North-Holland Amsterdam), 1459-1517 · Zbl 1046.46048
[37] Randrianantoanina, N., Non-commutative martingale VMO-spaces, Studia Math., 191, 39-55 (2009) · Zbl 1175.46007
[38] Samuel, C., Sur les sous-espaces de \(\ell_p \hat{\otimes} \ell_q\), Math. Scand., 47, 247-250 (1980) · Zbl 0448.46049
[39] Semadeni, Z., Banach Spaces of Continuous Functions, vol. I (1971), PWN - Polish Scientific Publishers: PWN - Polish Scientific Publishers Warsaw · Zbl 0225.46030
[40] Tomczak-Jaegermann, N., Banach-Mazur Distances and Finite-Dimensional Operator Ideals (1989), Longman Scientific and Technical: Longman Scientific and Technical Harlow, UK · Zbl 0721.46004
[41] Whitley, R., Strictly singular operators and their conjugates, Trans. Amer. Math. Soc., 113, 252-261 (1964) · Zbl 0124.06603
[42] Wojtaszczyk, P., The Banach space \(H_1\), (Functional Analysis: Surveys and Recent Results, III. Functional Analysis: Surveys and Recent Results, III, Paderborn, 1983. Functional Analysis: Surveys and Recent Results, III. Functional Analysis: Surveys and Recent Results, III, Paderborn, 1983, North-Holland Math. Stud., vol. 90 (1984), North-Holland: North-Holland Amsterdam), 1-33 · Zbl 0584.46040
[43] Wojtaszczyk, P., Banach Spaces for Analysts (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0724.46012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.