×

On the Waring-Goldbach problem for eighth and higher powers. (English) Zbl 1358.11117

Recent progress on Vinogradov’s mean value theorem obtained by the second author [Ann. Math. (2) 175, No. 3, 1575–1627 (2012; Zbl 1267.11105); Adv. Math. 294, 532–561 (2016; Zbl 1365.11097); Proc. Lond. Math. Soc. (3) 111, No. 3, 519–560 (2015; Zbl 1328.11087)] permits improved estimates for exponential sums of Weyl type. The authors apply these new estimates to obtain sharper bounds for the function \(H(k)\) in the Waring-Goldbach problem. For an integer \(k\geq 2\) and a positive prime number \(p\) with \(p^\theta\mid k\), \(p^{\theta+1}\nmid k\), let \[ \gamma=\gamma(k,p)= \begin{cases} \theta+2\;\text{when }p=2\;\text{and}\;\theta>0,\\ \theta+1\;\text{otherwise}\end{cases}\qquad\text{and }K(k)= \prod_{(p-1)\mid k} p^\gamma. \] Let \(H(k)\) denote the least integer \(s\) such that every sufficiently large positive integer congruent to \(s\) modulo \(K(k)\) may be written as the sum of the \(k\)th powers of \(s\) primes. The authors obtain new results for all exponents \(k\geq 8\), and in particular establish that \(H(k)\leq (4k-2)\log k+k-7\) when \(k\) is large, giving the first improvement on the classical result of L.-K. Hua [Q. J. Math., Oxf. Ser. 9, 68–80 (1938; Zbl 0018.29404)].

MSC:

11P32 Goldbach-type theorems; other additive questions involving primes
11L20 Sums over primes
11P05 Waring’s problem and variants
11P55 Applications of the Hardy-Littlewood method

References:

[1] J.Buttcane, ‘A note on the Waring-Goldbach problem’, J. Number Theory, 130 (2010) 116-127. · Zbl 1262.11088
[2] V. N.Chubarikov, ‘On the Waring-Goldbach problem’, Dokl. Akad. Nauk, 427 (2009) 24-27. · Zbl 1220.11128
[3] L. K.Hua, ‘Some results in prime number theory’, Quart. J. Math. Oxford, 9 (1938) 68-80. · JFM 64.0131.02
[4] L. K.Hua, Additive Primzahltheorie (B. G. Teubner Verlagsgesellschaft, Leipzig, 1959). · Zbl 0088.25503
[5] L. K.Hua, Additive theory of prime numbers (American Mathematical Society, Providence, RI, 1965). · Zbl 0192.39304
[6] K.Kawada, T. D.Wooley, ‘On the Waring-Goldbach problem for fourth and fifth powers’, Proc. London Math. Soc., (3)83 (2001) 1-50. · Zbl 1016.11046
[7] A.Kumchev, ‘The Waring-Goldbach problem for seventh powers’, Proc. Amer. Math. Soc., 133 (2005) 2927-2937. · Zbl 1125.11055
[8] A.Kumchev, ‘On Weyl sums over primes and almost primes’, Michigan Math. J., 54 (2006) 243-268. · Zbl 1137.11054
[9] A.Kumchev, ‘On Weyl sums over primes in short intervals’, Number theory: arithmetic in Shangri‐La (World Scientific, Singapore, 2013) 116-131. · Zbl 1368.11095
[10] J. Y.Liu, ‘Enlarged major arcs in additive problems, II’, Tr. Mat. Inst. Steklova, 276 (2012) 182-197. · Zbl 1297.11130
[11] J. Y.Liu, T.Zhan, New developments in the additive theory of prime numbers (World Scientific, Singapore), to appear.
[12] K.Thanigasalam, ‘Improvement on Davenport’s iterative method and new results in additive number theory, I’, Acta Arith., 46 (1985) 1-31. · Zbl 0564.10049
[13] K.Thanigasalam, ‘Improvement on Davenport’s iterative method and new results in additive number theory III’, Acta Arith., 48 (1987) 97-116. · Zbl 0578.10051
[14] R. C.Vaughan, ‘On Waring’s problem for smaller exponents’, Proc. London Math. Soc., (3)52 (1986) 445-463. · Zbl 0601.10035
[15] R. C.Vaughan, The Hardy-Littlewood method, 2nd edn, Cambridge Tracts in Mathematics 125 (Cambridge University Press, Cambridge, 1997). · Zbl 0868.11046
[16] R. C.Vaughan, T. D.Wooley, ‘On Waring’s problem: some refinements’, Proc. London Math. Soc., (3)63 (1991) 35-68. · Zbl 0736.11058
[17] I. M.Vinogradov, ‘Representation of an odd number as the sum of three primes’, Dokl. Akad. Nauk SSSR, 15 (1937) 291-294. · JFM 63.0131.04
[18] T. D.Wooley, ‘Vinogradov’s mean value theorem via efficient congruencing’, Ann. of Math., (2)175 (2012) 1575-1627. · Zbl 1267.11105
[19] T. D.Wooley, ‘Vinogradov’s mean value theorem via efficient congruencing, II’, Duke Math. J., 162 (2013) 673-730. · Zbl 1312.11066
[20] T. D.Wooley, ‘The cubic case of the main conjecture in Vinogradov’s mean value theorem’, Adv. Math. 294 (2016) 532-561. · Zbl 1365.11097
[21] T. D.Wooley, ‘Multigrade efficient congruencing and Vinogradov’s mean value theorem’, Proc. London Math. Soc., (3)111 (2015) 519-560. · Zbl 1328.11087
[22] L.Zhao, ‘On the Waring-Goldbach problem for fourth and sixth powers’, Proc. London Math. Soc., (3)108 (2014) 1593-1622. · Zbl 1370.11116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.