×

Renormalization of an abelian tensor group field theory: solution at leading order. (English) Zbl 1388.83127

Summary: We study a just-renormalizable tensorial group field theory of rank six with quartic melonic interactions and abelian group \(U(1)\). We introduce the formalism of the intermediate field, which allows a precise characterization of the leading order Feynman graphs. We define the renormalization of the model, compute its (perturbative) renormalization group flow and write its expansion in terms of effective couplings. We then establish closed equations for the two point and four point functions at leading (melonic) order. Using the effective expansion and its uniform exponential bounds we prove that these equations admit a unique solution at small renormalized coupling.

MSC:

83C45 Quantization of the gravitational field

References:

[1] R. Gurau and J.P. Ryan, Colored Tensor Models — A review, SIGMA8 (2012) 020 [arXiv:1109.4812] [INSPIRE]. · Zbl 1242.05094
[2] V. Rivasseau, Quantum Gravity and Renormalization: The Tensor Track, AIP Conf. Proc.1444 (2011) 18 [arXiv:1112.5104] [INSPIRE].
[3] V. Rivasseau, The Tensor Track: an Update, arXiv:1209.5284 [INSPIRE]. · Zbl 1298.83059
[4] V. Rivasseau, The Tensor Track, III, Fortsch. Phys.62 (2014) 81 [arXiv:1311.1461] [INSPIRE]. · Zbl 1338.83085 · doi:10.1002/prop.201300032
[5] T. Thiemann, Modern canonical quantum General Relativity, Cambridge University Press, Cambridge U.K. (2007). · Zbl 1129.83004 · doi:10.1017/CBO9780511755682
[6] A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A status report, Class. Quant. Grav.21 (2004) R53 [gr-qc/0404018] [INSPIRE]. · Zbl 1077.83017 · doi:10.1088/0264-9381/21/15/R01
[7] C. Rovelli, Quantum Gravity, Cambridge University Press, (2006).
[8] D.V. Boulatov, A model of three-dimensional lattice gravity, Mod. Phys. Lett.A 7 (1992) 1629 [hep-th/9202074] [INSPIRE]. · Zbl 1020.83539 · doi:10.1142/S0217732392001324
[9] H. Ooguri, Topological lattice models in four-dimensions, Mod. Phys. Lett.A 7 (1992) 2799 [hep-th/9205090] [INSPIRE]. · Zbl 0968.57501 · doi:10.1142/S0217732392004171
[10] L. Freidel, Group field theory: An overview, Int. J. Theor. Phys.44 (2005) 1769 [hep-th/0505016] [INSPIRE]. · Zbl 1100.83010 · doi:10.1007/s10773-005-8894-1
[11] D. Oriti, The microscopic dynamics of quantum space as a group field theory, arXiv:1110.5606 [INSPIRE]. · Zbl 1269.83008
[12] D. Oriti, The group field theory approach to quantum gravity, gr-qc/0607032 [INSPIRE]. · Zbl 1223.83025
[13] D. Oriti, Quantum gravity as a quantum field theory of simplicial geometry, gr-qc/0512103 [INSPIRE]. · Zbl 1120.83024
[14] D. Oriti, The Group field theory approach to quantum gravity: Some recent results, in The Planck Scale: Proceedings of the XXV Max Born Symposium, J. Kowalski-Glikman et al. eds., AIP: conference proceedings (2009), [arXiv:0912.2441] [INSPIRE].
[15] A. Baratin and D. Oriti, Ten questions on Group Field Theory (and their tentative answers), J. Phys. Conf. Ser.360 (2012) 012002 [arXiv:1112.3270] [INSPIRE]. · doi:10.1088/1742-6596/360/1/012002
[16] T. Krajewski, Group field theories, PoS(QGQGS 2011)005 [arXiv:1210.6257] [INSPIRE].
[17] J. Ambjørn, B. Durhuus and T. Jonsson, Three-dimensional simplicial quantum gravity and generalized matrix models, Mod. Phys. Lett.A 6 (1991) 1133 [INSPIRE]. · Zbl 1020.83537 · doi:10.1142/S0217732391001184
[18] M. Gross, Tensor models and simplicial quantum gravity in > 2-D, Nucl. Phys. Proc. Suppl.25A (1992) 144 [INSPIRE]. · Zbl 0957.83511 · doi:10.1016/S0920-5632(05)80015-5
[19] N. Sasakura, Tensor model for gravity and orientability of manifold, Mod. Phys. Lett.A 6 (1991) 2613 [INSPIRE]. · Zbl 1020.83542 · doi:10.1142/S0217732391003055
[20] V.A. Kazakov, Bilocal Regularization of Models of Random Surfaces, Phys. Lett.B 150 (1985) 282 [INSPIRE]. · doi:10.1016/0370-2693(85)91011-1
[21] F. David, A Model of Random Surfaces with Nontrivial Critical Behavior, Nucl. Phys.B 257 (1985) 543 [INSPIRE]. · doi:10.1016/0550-3213(85)90363-3
[22] P. Di Francesco, P.H. Ginsparg and J. Zinn-Justin, 2-D Gravity and random matrices, Phys. Rept.254 (1995) 1 [hep-th/9306153] [INSPIRE]. · doi:10.1016/0370-1573(94)00084-G
[23] C. Rovelli, The basis of the Ponzano-Regge-Turaev-Viro-Ooguri quantum gravity model in the loop representation basis, Phys. Rev.D 48 (1993) 2702 [hep-th/9304164] [INSPIRE].
[24] R. De Pietri, L. Freidel, K. Krasnov and C. Rovelli, Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space, Nucl. Phys.B 574 (2000) 785 [hep-th/9907154] [INSPIRE]. · Zbl 0992.83017 · doi:10.1016/S0550-3213(00)00005-5
[25] M.P. Reisenberger and C. Rovelli, Space-time as a Feynman diagram: The connection formulation, Class. Quant. Grav.18 (2001) 121 [gr-qc/0002095] [INSPIRE]. · Zbl 0977.83015 · doi:10.1088/0264-9381/18/1/308
[26] A. Perez, The Spin Foam Approach to Quantum Gravity, Living Rev. Rel.16 (2013) 3 [arXiv:1205.2019] [INSPIRE]. · Zbl 1320.83008
[27] C. Rovelli, Zakopane lectures on loop gravity, PoS(QGQGS 2011)003 [arXiv:1102.3660] [INSPIRE].
[28] A. Baratin and D. Oriti, Group field theory with non-commutative metric variables, Phys. Rev. Lett.105 (2010) 221302 [arXiv:1002.4723] [INSPIRE]. · doi:10.1103/PhysRevLett.105.221302
[29] A. Baratin and D. Oriti, Group field theory and simplicial gravity path integrals: A model for Holst-Plebanski gravity, Phys. Rev.D 85 (2012) 044003 [arXiv:1111.5842] [INSPIRE].
[30] D. Oriti, Group field theory as the 2nd quantization of Loop Quantum Gravity, arXiv:1310.7786 [INSPIRE]. · Zbl 1338.83082
[31] D. Oriti, Group Field Theory and Loop Quantum Gravity, arXiv:1408.7112 [INSPIRE]. · Zbl 1459.83019
[32] D. Oriti, J.P. Ryan and J. Thürigen, Group field theories for all loop quantum gravity, New J. Phys.17 (2015) 023042 [arXiv:1409.3150] [INSPIRE]. · Zbl 1452.83007 · doi:10.1088/1367-2630/17/2/023042
[33] R. Gurau, Colored Group Field Theory, Commun. Math. Phys.304 (2011) 69 [arXiv:0907.2582] [INSPIRE]. · Zbl 1214.81170 · doi:10.1007/s00220-011-1226-9
[34] R. Gurau, Lost in Translation: Topological Singularities in Group Field Theory, Class. Quant. Grav.27 (2010) 235023 [arXiv:1006.0714] [INSPIRE]. · Zbl 1205.83022 · doi:10.1088/0264-9381/27/23/235023
[35] R. Gurau, The 1/N expansion of colored tensor models, Annales Henri Poincaré 12 (2011) 829 [arXiv:1011.2726] [INSPIRE]. · Zbl 1218.81088 · doi:10.1007/s00023-011-0101-8
[36] R. Gurau, The complete 1/N expansion of colored tensor models in arbitrary dimension, Annales Henri Poincaré 13 (2012) 399 [arXiv:1102.5759] [INSPIRE]. · Zbl 1245.81118 · doi:10.1007/s00023-011-0118-z
[37] R. Gurau and V. Rivasseau, The 1/N expansion of colored tensor models in arbitrary dimension, Europhys. Lett.95 (2011) 50004 [arXiv:1101.4182] [INSPIRE]. · doi:10.1209/0295-5075/95/50004
[38] V. Bonzom, R. Gurau, A. Riello and V. Rivasseau, Critical behavior of colored tensor models in the large-N limit, Nucl. Phys.B 853 (2011) 174 [arXiv:1105.3122] [INSPIRE]. · Zbl 1229.81222 · doi:10.1016/j.nuclphysb.2011.07.022
[39] R. Gurau, Universality for Random Tensors, arXiv:1111.0519 [INSPIRE]. · Zbl 1318.60010
[40] V. Bonzom, R. Gurau and V. Rivasseau, Random tensor models in the large-N limit: Uncoloring the colored tensor models, Phys. Rev.D 85 (2012) 084037 [arXiv:1202.3637] [INSPIRE].
[41] A. Tanasa, Multi-orientable Group Field Theory, J. Phys.A 45 (2012) 165401 [arXiv:1109.0694] [INSPIRE]. · Zbl 1246.81172
[42] S. Dartois, V. Rivasseau and A. Tanasa, The 1/N expansion of multi-orientable random tensor models, Annales Henri Poincaré 15 (2014) 965 [arXiv:1301.1535] [INSPIRE]. · Zbl 1288.81070 · doi:10.1007/s00023-013-0262-8
[43] M. Raasakka and A. Tanasa, Next-to-leading order in the large N expansion of the multi-orientable random tensor model, Annales Henri Poincaré 16 (2015) 1267 [arXiv:1310.3132] [INSPIRE]. · Zbl 1314.83022 · doi:10.1007/s00023-014-0336-2
[44] E. Fusy and A. Tanasa, Asymptotic expansion of the multi-orientable random tensor model, arXiv:1408.5725 [INSPIRE]. · Zbl 1310.81117
[45] R. Gurau, The Double Scaling Limit in Arbitrary Dimensions: A Toy Model, Phys. Rev.D 84 (2011) 124051 [arXiv:1110.2460] [INSPIRE].
[46] W. Kaminski, D. Oriti and J.P. Ryan, Towards a double-scaling limit for tensor models: probing sub-dominant orders, New J. Phys.16 (2014) 063048 [arXiv:1304.6934] [INSPIRE]. · Zbl 1451.81276 · doi:10.1088/1367-2630/16/6/063048
[47] S. Dartois, R. Gurau and V. Rivasseau, Double Scaling in Tensor Models with a Quartic Interaction, JHEP09 (2013) 088 [arXiv:1307.5281] [INSPIRE]. · Zbl 1342.83079 · doi:10.1007/JHEP09(2013)088
[48] V. Bonzom, R. Gurau, J.P. Ryan and A. Tanasa, The double scaling limit of random tensor models, JHEP09 (2014) 051 [arXiv:1404.7517] [INSPIRE]. · Zbl 1333.60014 · doi:10.1007/JHEP09(2014)051
[49] V. Rivasseau, The Tensor Theory Space, Fortsch. Phys.62 (2014) 835 [arXiv:1407.0284] [INSPIRE]. · Zbl 1338.83086 · doi:10.1002/prop.201400057
[50] D. Oriti, Disappearance and emergence of space and time in quantum gravity, Stud. Hist. Philos. Mod. Phys.46 (2014) 186 [arXiv:1302.2849] [INSPIRE]. · Zbl 1315.83028 · doi:10.1016/j.shpsb.2013.10.006
[51] B.L. Hu, Can spacetime be a condensate?, Int. J. Theor. Phys.44 (2005) 1785 [gr-qc/0503067] [INSPIRE]. · Zbl 1119.83336
[52] T.A. Koslowski, Dynamical Quantum Geometry (DQG Programme), arXiv:0709.3465 [INSPIRE].
[53] T. Koslowski and H. Sahlmann, Loop quantum gravity vacuum with nondegenerate geometry, SIGMA8 (2012) 026 [arXiv:1109.4688] [INSPIRE]. · Zbl 1242.83042
[54] B. Dittrich and M. Geiller, A new vacuum for Loop Quantum Gravity, arXiv:1401.6441 [INSPIRE]. · Zbl 1320.83030
[55] B. Dittrich, F.C. Eckert and M. Martin-Benito, Coarse graining methods for spin net and spin foam models, New J. Phys.14 (2012) 035008 [arXiv:1109.4927] [INSPIRE]. · doi:10.1088/1367-2630/14/3/035008
[56] B. Bahr, B. Dittrich, F. Hellmann and W. Kaminski, Holonomy Spin Foam Models: Definition and Coarse Graining, Phys. Rev.D 87 (2013) 044048 [arXiv:1208.3388] [INSPIRE].
[57] B. Dittrich, M. Martín-Benito and E. Schnetter, Coarse graining of spin net models: dynamics of intertwiners, New J. Phys.15 (2013) 103004 [arXiv:1306.2987] [INSPIRE]. · doi:10.1088/1367-2630/15/10/103004
[58] J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Nonperturbative Quantum Gravity, Phys. Rept.519 (2012) 127 [arXiv:1203.3591] [INSPIRE]. · doi:10.1016/j.physrep.2012.03.007
[59] D. Benedetti and J. Henson, Spacetime condensation in (2+1)-dimensional CDT from a Hořava-Lifshitz minisuperspace model, arXiv:1410.0845 [INSPIRE]. · Zbl 1329.83081
[60] J. Mielczarek, Big Bang as a critical point, arXiv:1404.0228 [INSPIRE].
[61] J. Magueijo, L. Smolin and C.R. Contaldi, Holography and the scale-invariance of density fluctuations, Class. Quant. Grav.24 (2007) 3691 [astro-ph/0611695] [INSPIRE]. · Zbl 1206.83031 · doi:10.1088/0264-9381/24/14/009
[62] S. Gielen, D. Oriti and L. Sindoni, Cosmology from Group Field Theory Formalism for Quantum Gravity, Phys. Rev. Lett.111 (2013) 031301 [arXiv:1303.3576] [INSPIRE]. · doi:10.1103/PhysRevLett.111.031301
[63] S. Gielen, D. Oriti and L. Sindoni, Homogeneous cosmologies as group field theory condensates, JHEP06 (2014) 013 [arXiv:1311.1238] [INSPIRE]. · Zbl 1333.81187 · doi:10.1007/JHEP06(2014)013
[64] L. Sindoni, Effective equations for GFT condensates from fidelity, arXiv:1408.3095 [INSPIRE].
[65] S. Gielen and D. Oriti, Quantum cosmology from quantum gravity condensates: cosmological variables and lattice-refined dynamics, New J. Phys.16 (2014) 123004 [arXiv:1407.8167] [INSPIRE]. · Zbl 1451.85010 · doi:10.1088/1367-2630/16/12/123004
[66] S. Gielen, Perturbing a quantum gravity condensate, Phys. Rev.D 91 (2015) 043526 [arXiv:1411.1077] [INSPIRE].
[67] J. Ben Geloun and V. Bonzom, Radiative corrections in the Boulatov-Ooguri tensor model: The 2-point function, Int. J. Theor. Phys.50 (2011) 2819 [arXiv:1101.4294] [INSPIRE]. · Zbl 1236.81164 · doi:10.1007/s10773-011-0782-2
[68] J. Ben Geloun and V. Rivasseau, A Renormalizable 4-Dimensional Tensor Field Theory, Commun. Math. Phys.318 (2013) 69 [arXiv:1111.4997] [INSPIRE]. · Zbl 1261.83016 · doi:10.1007/s00220-012-1549-1
[69] J. Ben Geloun and V. Rivasseau, Addendum to ‘A Renormalizable 4-Dimensional Tensor Field Theory’, Commun. Math. Phys.322 (2013) 957 [arXiv:1209.4606] [INSPIRE]. · Zbl 1272.83027 · doi:10.1007/s00220-013-1703-4
[70] J. Ben Geloun and E.R. Livine, Some classes of renormalizable tensor models, J. Math. Phys.54 (2013) 082303 [arXiv:1207.0416] [INSPIRE]. · Zbl 1287.83021 · doi:10.1063/1.4818797
[71] J. Ben Geloun, Renormalizable Models in Rank d ≥ 2 Tensorial Group Field Theory, Commun. Math. Phys.332 (2014) 117 [arXiv:1306.1201] [INSPIRE]. · Zbl 1300.83043 · doi:10.1007/s00220-014-2142-6
[72] T. Krajewski, Schwinger-Dyson Equations in Group Field Theories of Quantum Gravity, arXiv:1211.1244 [INSPIRE]. · Zbl 1298.83055
[73] M. Raasakka and A. Tanasa, Combinatorial Hopf algebra for the Ben Geloun-Rivasseau tensor field theory, arXiv:1306.1022 [INSPIRE]. · Zbl 1297.05258
[74] T. Krajewski and R. Toriumi, Polchinski’s equation for group field theory, Fortsch. Phys.62 (2014) 855 [INSPIRE]. · Zbl 1338.83077 · doi:10.1002/prop.201400043
[75] S. Carrozza, D. Oriti and V. Rivasseau, Renormalization of Tensorial Group Field Theories: Abelian U(1) Models in Four Dimensions, Commun. Math. Phys.327 (2014) 603 [arXiv:1207.6734] [INSPIRE]. · Zbl 1291.83102 · doi:10.1007/s00220-014-1954-8
[76] D.O. Samary and F. Vignes-Tourneret, Just Renormalizable TGFT’s on U(1)dwith Gauge Invariance, Commun. Math. Phys.329 (2014) 545 [arXiv:1211.2618] [INSPIRE]. · Zbl 1294.83031 · doi:10.1007/s00220-014-1930-3
[77] S. Carrozza, D. Oriti and V. Rivasseau, Renormalization of a SU(2) Tensorial Group Field Theory in Three Dimensions, Commun. Math. Phys.330 (2014) 581 [arXiv:1303.6772] [INSPIRE]. · Zbl 1300.83023 · doi:10.1007/s00220-014-1928-x
[78] S. Carrozza, Tensorial methods and renormalization in Group Field Theories, arXiv:1310.3736 [INSPIRE]. · Zbl 1338.81004
[79] J. Ben Geloun, Two and four-loop β-functions of rank 4 renormalizable tensor field theories, Class. Quant. Grav.29 (2012) 235011 [arXiv:1205.5513] [INSPIRE]. · Zbl 1258.83033 · doi:10.1088/0264-9381/29/23/235011
[80] J. Ben Geloun, Asymptotic Freedom of Rank 4 Tensor Group Field Theory, arXiv:1210.5490 [INSPIRE]. · Zbl 1298.83041
[81] J. Ben Geloun and D.O. Samary, 3D Tensor Field Theory: Renormalization and One-loop β-functions, Annales Henri Poincaré 14 (2013) 1599 [arXiv:1201.0176] [INSPIRE]. · Zbl 1272.83028 · doi:10.1007/s00023-012-0225-5
[82] D. Ousmane Samary, β-functions of U(1)dgauge invariant just renormalizable tensor models, Phys. Rev.D 88 (2013) 105003 [arXiv:1303.7256] [INSPIRE].
[83] S. Carrozza, Discrete Renormalization Group for SU(2) Tensorial Group Field Theory, arXiv:1407.4615 [INSPIRE]. · Zbl 1319.81068
[84] A. Baratin, S. Carrozza, D. Oriti, J. Ryan and M. Smerlak, Melonic phase transition in group field theory, Lett. Math. Phys.104 (2014) 1003 [arXiv:1307.5026] [INSPIRE]. · Zbl 1297.81136 · doi:10.1007/s11005-014-0699-9
[85] R. Gurau and J.P. Ryan, Melons are branched polymers, Annales Henri Poincaré 15 (2014) 2085 [arXiv:1302.4386] [INSPIRE]. · Zbl 1303.83012 · doi:10.1007/s00023-013-0291-3
[86] D. Benedetti, J. Ben Geloun and D. Oriti, Functional Renormalisation Group Approach for Tensorial Group Field Theory: a Rank-3 Model, JHEP03 (2015) 084 [arXiv:1411.3180] [INSPIRE]. · Zbl 1388.83088 · doi:10.1007/JHEP03(2015)084
[87] V. Rivasseau, From perturbative to constructive renormalization, Princeton series in physics, Princeton University Press, Princeton U.S.A. (1991). · doi:10.1515/9781400862085
[88] T. Delepouve and V. Rivasseau, Constructive Tensor Field Theory: The T34Model, arXiv:1412.5091 [INSPIRE]. · Zbl 1345.81073
[89] R. Gurau, The 1/N Expansion of Tensor Models Beyond Perturbation Theory, Commun. Math. Phys.330 (2014) 973 [arXiv:1304.2666] [INSPIRE]. · Zbl 1297.81126 · doi:10.1007/s00220-014-1907-2
[90] T. Delepouve, R. Gurau and V. Rivasseau, Universality and Borel Summability of Arbitrary Quartic Tensor Models, arXiv:1403.0170 [INSPIRE]. · Zbl 1341.81045
[91] V.A. Nguyen, S. Dartois and B. Eynard, An analysis of the intermediate field theory of T4tensor model, JHEP01 (2015) 013 [arXiv:1409.5751] [INSPIRE]. · doi:10.1007/JHEP01(2015)013
[92] H. Grosse and R. Wulkenhaar, Renormalization of ϕ4theory on noncommutative R4in the matrix base, Commun. Math. Phys.256 (2005) 305 [hep-th/0401128] [INSPIRE]. · Zbl 1075.82005 · doi:10.1007/s00220-004-1285-2
[93] H. Grosse and R. Wulkenhaar, Progress in solving a noncommutative quantum field theory in four dimensions, arXiv:0909.1389 [INSPIRE]. · Zbl 1305.81129
[94] H. Grosse and R. Wulkenhaar, Self-Dual Noncommutative ϕ4-Theory in Four Dimensions is a Non-Perturbatively Solvable and Non-Trivial Quantum Field Theory, Commun. Math. Phys.329 (2014) 1069 [arXiv:1205.0465] [INSPIRE]. · Zbl 1305.81129 · doi:10.1007/s00220-014-1906-3
[95] H. Grosse and R. Wulkenhaar, Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity, arXiv:1406.7755 [INSPIRE].
[96] D.O. Samary, Closed equations of the two-point functions for tensorial group field theory, Class. Quant. Grav.31 (2014) 185005 [arXiv:1401.2096] [INSPIRE]. · Zbl 1300.81058 · doi:10.1088/0264-9381/31/18/185005
[97] D.O. Samary, C.I. Pérez-Sánchez, F. Vignes-Tourneret and R. Wulkenhaar, Correlation functions of just renormalizable tensorial group field theory: The melonic approximation, arXiv:1411.7213 [INSPIRE]. · Zbl 1327.83122
[98] G. Gallavotti and F. Nicolò, renormalization theory in four-dimensional scalar fields. I, Commun. Math. Phys.100 (1985) 545 [INSPIRE]. · doi:10.1007/BF01217729
[99] V. Rivasseau, Constructive Matrix Theory, JHEP09 (2007) 008 [arXiv:0706.1224] [INSPIRE]. · doi:10.1088/1126-6708/2007/09/008
[100] G. ’t Hooft, Rigorous Construction of Planar Diagram Field Theories in Four-dimensional Euclidean Space, Commun. Math. Phys.88 (1983) 1 [INSPIRE].
[101] V. Rivasseau, Construction and Borel Summability of Planar Four-dimensional Euclidean Field Theory, Commun. Math. Phys.95 (1984) 445 [INSPIRE]. · doi:10.1007/BF01210833
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.